New Modular Calamitic Ligands for Self-Assembly of Thermostable Quantum Dot Microcapsules via Nematic Templating

18 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design, synthesis, properties, and performance of a new class of promesogenic calamitic side-tethering organic ligands used to direct quantum dot nanoparticle self-assembly via nematic templating are described. This work was motivated by inadequate modularity, step count, and yield associated with syntheses of existing ligands. Attaching the new ligands to quantum dots and dispersing them in a liquid crystal host affords hollow micron-sized capsules via nematic templating. The capsules resist thermal decomposition up to 350 °C — significantly higher than any previously reported microcapsules assembled from side-tethering calamitic ligand-functionalized nanoparticle. Evaluation of the capsules by small-angle X-ray scattering shows that interparticle spacing varies from 10–13 nm depending on the ligand used, and is correlated to aminoalkyl chain length.

Keywords

organic synthesis
calamitic ligands
nematic templating
microcapsules
quantum dots
liquid crystals

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.