Peak Force Visible Microscopy for Determination of Exciton Diffusion Length in Organic Photovoltaic Blends

13 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


In this article, we developed a new nano spectroscopic technique, peak force visible (PF-vis) microscopy, which is based on the peak force tapping mode in an atomic force microscope to both visualize nanoscale morphology and estimate exciton diffusion lengths of donor domains in organic photovoltaic blends. Nano phase-separations in P3HT:PCBM and TFB:PCBM blend films were clearly revealed by PF-vis microscopy with a high spatial resolution less than 10 nm. A model that correlates PF-vis signal and the exciton diffusion length was also developed to estimate the diffusion lengths of P3HT and TFB to be 2.9±0.3 and 9.0±1.5 nm, respectively. PF-vis microscopy is expected to assist the evaluation of OPV materials, therefore accelerating the pace of innovation of OPVs.


OPV chemical structure
Peak Force Tapping Atomic Force Microscopy
exciton diffusion

Supplementary materials

Supplementary Information PF-Vis on OPV manuscript Wang Xu


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.