Blinded Predictions of Standard Binding Free Energies: Lessons Learned from the SAMPL6 Challenge

16 August 2018, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In the context of the SAMPL6 challenges, series of blinded predictions of standard binding free energies were made with the SOMD software for a dataset of 27 host-guest systems featuring two octa-acids hosts (OA and TEMOA) and a cucuribituril ring (CB8) host. Three different models were used, ModelA computes the free energy of binding based on a double annihilation technique; ModelB additionally takes into account long-range dispersion and standard state corrections; ModelC additionally introduces an empirical correction term derived from a regression analysis of SAMPL5 predictions previously made with SOMD. The performance of each model was evaluated with two different setups; buffer explicitly matches the ionic strength from the binding assays, whereas no-buffer merely neutralizes the host-guest net charge with counter-ions. ModelC/no-buffer shows the lowest mean-unsigned error for the overall dataset (MUE 1.29 < 1.39 < 1.50 kcal mol-1, 95% CI), while explicit modelling of the buffer improves significantly results for the CB8 host only. Correlation with experimental data ranges from excellent for the host TEMOA (R2 0.91 < 0.94 < 0.96), to poor for CB8 (R2 0.04 < 0.12 < 0.23). Further investigations indicate a pronounced dependence of the binding free energies on the modelled ionic strength, and variable reproducibility of the binding free energies between different simulation packages.

Keywords

SAMPL6
Alchemical Free Energy Calculations
host guest molecules

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.