Phase-Transferable Force Field for Alkali Halides

10 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A longstanding goal of computational chemistry is to predict the state of materials in all phases with a single model. This is particularly relevant for materials that are difficult or dangerous to handle or compounds that have not yet been created. Progress towards this goal has been limited as most work has concentrated on just one phase, often determined by particular applications. In the framework of the development of the Alexandria force field we present here new polarizable force fields for alkali halides with Gaussian charge distributions for molecular dynamics simulations. We explore different descriptions of the Van der Waals interaction, like the commonly applied 12-6 Lennard-Jones (LJ), and compare it to \softer" ones, such as 8-6 LJ, Buckingham and a modified Buckingham potential. Our results for physico-chemical properties of the gas, liquid and solid phase of alkali halides, are compared to experimental data and calculations with reference polarizable and non-polarizable force fields. The new polarizable force field that employs a modified Buckingham potential predicts the tested properties for gas, liquid and solid phases with a very good accuracy. In contrast to reference force fields, this model reproduces the correct crystal structures for all alkali halides at low and high temperature. Seeing that experiments with molten salts may be tedious due to high temperatures and their corrosive nature, the models presented here can contribute significantly to our understanding of alkali halides in general and melts in particular.



Supplementary materials


Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.