How to Quantify Isotropic Negative Thermal Expansion: Magnitude, Range or Both?

03 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Negative thermal expansion (NTE) is the useful and counterintuitive material property of volume contraction on heating. Isotropic NTE is the rarest and most useful type, and is known to occur in a variety of different classes of materials. In this mini-review we ask the simple question of how best to compare NTE behaviour amongst these different systems? We summarise the two main mechanisms for isotropic NTE, and illustrate how these favour alternatively NTE magnitude
and NTE range. We argue in favour of a combined metric of NTE capacity, which balances both effects and allows unbiased identification of the most remarkable NTE materials, irrespective of the underlying microscopic mechanism at play. By organising known NTE materials according to these various metrics, we find intuitive trends in behaviour that help identify key materials for specific NTE applications.

Keywords

Negative Thermal Expansion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.