Sampling of Tissues with Laser Ablation for bottom-up Proteomics: Comparison of Picosecond Infrared Laser (PIRL) and Microsecond Infrared Laser (MIRL)

19 July 2018, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The analysis of proteomes directly from tissues requires the proteins to be released from the cells and their compartments and solubilized, which usually is achieved by mechanical homogenization. It was recently shown, that sampling of tissues with the novel picosecond infrared laser (PIRL) offers higher yields of proteins with respect to the total amount and total number of individual proteins in comparison to mechanical homogenization. Furthermore, proteins obtained from tissues by homogenization with PIRL are significantly less enzymatically degraded, giving improved access to the original composition of proteoforms. The effective cold vaporization of tissue with PIRL is very soft, which is responsible for the phenomenon, that even enzymatic activities of proteins in the tissue aerosol are maintained. In contrast, the energy following irradiation of tissue with microsecond infrared laser (MIRL) pulses is not thermally and acoustically confined to the ablated volume. In this study, PIRL (1 J·cm-2) and MIRL (40-60 J·cm-2) were compared for sampling different tissue types for bottom-up proteomics. We showed that PIRL at low fluence is optimal for soft tissue and desired in scenarios were enzymatic activities of proteins must be maintained as well as were no residual tissue damage is a requirement. MIRL could be well suited for scenarios were enzymatic activities must be suppressed within the intact tissue and thermal and acoustic damage is not a concern.

Keywords

mass spectrometry method
proteomics analysis
Tissue sampling
laser ablation method

Supplementary materials

Title
Description
Actions
Title
Sampling of Tissues with Laser Ablation for buttom up proteomics 17.07.2018
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.