Effects of Solvent-Salt Charge-Transfer Complexes on Oxidative Stability of Li-Ion Battery Electrolytes

21 August 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Electrochemical stability windows of electrolytes largely determine the limitations of operating regimes and energy density of Li-ion batteries but the controlling degradation mechanisms are difficult to characterize and remain poorly understood. We investigate the oxidative decomposition mechanisms governing high voltage stability of multi-component organic electrolytes using computational techniques of quantum chemistry. The intrinsic oxidation potential is modeled using vertical ionization potentials (IP) of ensembles of anion-solvent clusters generated using molecular dynamics. In some cases, the IP of the solvent-anion complex is significantly lower than that of each individual component. This effect is found to originate from the oxidation-driven charge transfer complex formation between the anion and the solvent. We propose a simple model to quantitatively understand this phenomenon and validate it for 16 combinations of common anions (4,5-dicyano-2-(trifluoromethyl)imidazolium, bis-(trifluoromethane solfonimmide), tetrafluroborate, hexafluorophosphate) and solvents (dimethyl sulfoxide, dimethoxyethane, propylene carbonate, acetonitrile). This new understanding of the microscopic details of oxidation allows us to interpret trends in published experimental and computational results and to formulate design rules for rapidly assessing stability of electrolyte compositions.

Keywords

Li-based batteries
electrolytes
Oxidative stability
Quantum Chemistry
charge transfer

Supplementary materials

Title
Description
Actions
Title
ESI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.