Crosslinked Ionomer Gel Separators for Polysulfide Shuttle Mitigation in Magnesium-Sulfur Batteries: Elucidation of Structure-Property Relationships

09 August 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A series of crosslinked ionomer networks of varying poly(ethylene glycol) diacrylate crosslinker chain length, ionic co-monomer chemistry, and co-monomer ratio have been studied for their use as polysulfide shuttle inhibiting separators in magnesium-sulfur (Mg-S) batteries. Through the use of X-ray scattering, polysulfide diffusion experiments, conductivity measurements, and Mg-S cell cycling, it was determined that inclusion of tethered anions in polymer networks mitigates the polysulfide shuttle effect. Polysulfide crossover through networks into a bulk electrolyte can be reduced by absorption into the polymer gel, steric rejection, and electrostatic rejection, with the predominance of these mechanisms dictated by polymer composition and structure. The best network composition allowed an initial Mg-S cell discharge capacity of 522 mAh/g compared to a discharge capacity of 365 mAh/g using a literature standard glass fiber separator. The ionomer cell saw 67% capacity retention after three cycles, whereas the glass fiber separator could not complete the first charging cycle due to polysulfide shuttle.


energy storage
polymer network


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.