Hybrid Mass Spectrometry Methods Reveal Lot-to-Lot Differences and Delineate the Effects of Glycosylation on the Structure of Herceptin®

30 July 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


To consider the measurable variations in biopharmaceuticals we use mass spectrometry and systematically evaluate three lots of Herceptin®, two mAb standards and an intact Fc-hinge fragment. Each mAb is examined in three states; glycan intact, truncated (following endoS2 treatment) and fully deglycosylated. Despite equivalence at the protein level, each lot of Herceptin® gives a distinctive signature in three different mass spectrometry analyses. Ion mobility mass spectrometry (IM-MS) shows that in the API, the attached N-glycans reduce the conformational spread of each mAb by 10.5 – 25 %. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) data supports this, with lower global deuterium uptake in solution when comparing intact to the fully deglycosylated protein. HDX-MS and activated IM-MS map the influence of glycans on the mAb and reveal allosteric effects which extend far beyond the Fc domains into the Fab region. Taken together these findings, and the supplied interactive data sets could be used to provide acceptance criteria with application for MS based characterisation of biosimilars and novel therapeutic mAbs.


ion-mobility mass spectrometry
Hydrogen-Deuterium Exchange Mass Spectrometry

Supplementary materials

Upton et al 2018 SI sub

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.