On-Surface Radical Oligomerisation: A New Approach to STM Tip-Induced Reactions

25 July 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Over the past decade, on-surface fabrication of organic nanostructures has been widely investigated for the development of molecular electronic devices, nanomachines, and new materials. Here, we introduce a new strategy to obtain alkyl oligomers in a controlled manner using on-surface radical oligomerisations that are triggered by the electrons/holes between the sample surface and the tip of a scanning tunnelling microscope. The resulting radical-mediated mechanism is substantiated by a detailed theoretical study. This electron transfer event only occurs when Vs < -3 V or Vs > + 3 V and allows access to reactive radical species under exceptionally mild conditions. This transfer can effectively ‘switch on’ a sequence leading to formation of oligomers of defined size distribution due to the on-surface confinement of reactive species. Our approach enables new ways to initiate and control radical oligomerisations with tunnelling electrons, leading to molecularly precise nanofabrication.

Keywords

radical
oligomerisation
on-surface phenomena
tunneling electrons

Supplementary materials

Title
Description
Actions
Title
SupplementaryInformation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.