Quantitative Ranking of Ligand Binding Kinetics with a Multiscale Milestoning Simulation Approach

02 July 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The ranking of small molecule binders by their kinetic (kon and koff) and thermodynamic (delta G) properties can be a valuable metric for lead selection and optimization in a drug discovery campaign, as these quantities are often indicators of in vivo efficacy. Efficient and accurate predictions of these quantities can aid the in drug discovery effort, acting as a screening step. We have previously described a hybrid molecular dynamics, Brownian dynamics, and milestoning model, Simulation Enabled Estimation of Kinetic Rates (SEEKR), that can predict kon’s, koff’s, and G’s. Here we demonstrate the effectiveness of this approach for ranking a series of seven small molecule compounds for the model system, -cyclodextrin, based on predicted kon’s and koff’s. We compare our results using SEEKR to experimentally determined rates as well as rates calculated using long-timescale molecular dynamics simulations and show that SEEKR can effectively rank the compounds by koff and G with reduced computational cost. We also provide a discussion of convergence properties and sensitivities of calculations with SEEKR to establish “best practices” for its future use.


ligand binding kinetics
molecular dynamics
Brownian dynamics
residence time
association rates

Supplementary materials

bcd SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.