Dramatic Improvement of Stability by In-Situ Linker Cyclization of a Metal-Organic Framework

02 July 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We employ a two-step strategy for accessing crystalline porous covalent networks of highly conjugated π-electron systems. For this, we first assembled a crystalline metal-organic framework (MOF) precursor based on Zr(IV) ions and a linear dicarboxyl linker molecule featuring backfolded, highly unsaturated alkyne backbones; massive thermocyclization of the organic linkers was then triggered to install highly conjugated, fused-aromatic bridges throughout the MOF scaffold while preserving the crystalline order. The formation of cyclized carbon links not only greatly strengthen the precursor coordination scaffold, but more importantly, enhance electroactivity and charge transport throughout the polycyclic aromatic grid.

Keywords

Metal-Organic Framework
Thermocyclization
porous materials
conjugated covalent networks
symmetrically backfolded dendrimers

Supplementary materials

Title
Description
Actions
Title
CyclizationBackfoldedZr15SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.