DFT-Assisted Design and Evaluation of Bifunctional Amine/Pyridine- Oxazoline Metal Catalysts for Additions of Ketones to Unactivated Alkenes and Alkynes

08 June 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Bifunctional catalyst systems for the direct addition of ketones to unactivated alkenes/alkynes were designed and modeled by density functional theory (DFT). The designed catalysts possess bidentate ligands suitable for binding of pi-acidic group 10 metals capable of activating alkenes/alkynes, and a tethered organocatalyst amine to activate the ketone via formation of a nucleophilic enamine intermediate. The structures of the designed catalysts before and after C–C bond formation were optimized using DFT, and reaction steps involving group 10 metals were predicted to be significantly exergonic. A novel oxazoline precatalyst with a tethered amine separated by a meta-substituted benzene spacer was predicted to have the potential to promote the desired reactions without undergoing self-quenching. The first example of a precatalyst of this class was synthesized via a 10-step sequence that includes a key regioselective epoxide ring-opening step. It was combined with group 10 metal salts, including cationic Pd(II) and Pt(II), and screened for the direct addition of ketones to several alkenes or an internal alkyne. 1H NMR studies suggest that catalyst-catalyst interactions with this system via amine–metal coordination may preclude the desired addition reactions. The catalyst design approach disclosed here, and the promising calculations obtained with square planar group 10 metals, light a path for the discovery of novel bifunctional catalysts for C–C bond formation.


alkenylation catalysts
platinum(II) complexes
bifunctional catalysis
hybrid catalysis
density functional theory
catalyst design strategy

Supplementary materials

2018 06 01 PyOX Manuscript SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.