Solvent-Ligand Interactions in Colloidal Nanocrystals

06 June 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Although solvent-ligand interactions play a major role in nanocrystal synthesis, dispersion formulation and assembly, there is currently no direct method to study this. Here we examine the broadening of 1H NMR resonances associated with bound ligands, and turn this poorly understood descriptor into a tool to assess solvent-ligand interactions. We show that the line broadening has both a homogeneous and a heterogeneous component. The former is nanocrystal-size dependent and the latter results from solvent-ligand interactions. Our model is supported by experimental and theoretical evidence that correlates broad NMR lines with poor ligand solvation. This correlation is found across a wide range of solvents, extending from water to hexane, for both hydrophobic and hydrophilic ligand types, and for a multitude of oxide, sulfide and selenide nanocrystals. Our findings thus put forward NMR line shape analysis as an indispensable tool to form, investigate and manipulate nanocolloids.


quantum dots

Supplementary materials

Supporting information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.