Kinetically Guided Radical-Based Synthesis of C(sp3)-C(sp3) Linkages on DNA

03 May 2018, Version 1


DNA-encoded libraries (DEL)-based discovery platforms have recently been widely adopted in pharmaceutical industry, mainly due to its powerful diversity and incredible number of molecules. In the past two decades since its disclosure, great strides have been made to expand the toolbox of reaction modes that are compatible with the idiosyncratic aqueous, dilute, and DNA-sensitive parameters of this system. However, construction of highly important C(sp3)-C(sp3) linkages on DNA through cross-coupling remains unexplored. In this article, we describe a systematic approach to translating standard organic reactions to a DEL-setting through the tactical combination of kinetic analysis and empirical screening with information captured from data mining. To exemplify this model, implementation of the Giese addition to forge high value C–C bonds on DNA was studied, which represents the first radical-based synthesis in DEL.


DNA-encoded libraries
combinatorial chemistry
radical reactions
organic synthesis

Supplementary materials

SI chemrxiv


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.