The Hydration Structure of Methylthiolate from QM/MM Molecular Dynamics

30 April 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Thiols are widely present in biological systems, most notably as the side chain of cysteine amino acids in proteins. Thiols can be deprotonated to form a thiolate, which affords a diverse range of enzymatic activity and modes for chemical modification of proteins. Parameters for modeling thiolates using molecular mechanical force fields have not yet been validated, in part due to the lack of structural data on thiolate solvation. Here, the CHARMM36 and Amber models for thiolates in aqueous solutions are assessed using free energy perturbation and QM/MM MD simulations. The hydration structure of methylthiolate was calculated from 1 ns of QM/MM MD (PBE0/def2-TZVP//TIP3P), which show that the water–S- distances are approximately 2 Å. The CHARMM thiolate parameters predict a thiolate S radius close to the QM/MM value and predict a hydration Gibbs energy of -331 kJ/mol, close to the experimental value of -318 kJ/mol. The cysteine thiolate model in the Amber force field underestimates the thiolate radius by 0.2 Å and overestimates the thiolate hydration energy by 119 kJ/mol because it uses the same Lennard-Jones parameters for thiolates as for thiols. A recent Drude polarizable model for methylthiolate with optimized thiolate parameters also performs well. SAPT2+ analysis indicates exchange repulsion is larger for the methylthiolate, consistent with it having a more diffuse electron density distribution in comparison to the parent thiol. These data demonstrate that it is important to define distinct non-bonded parameters for the protonated/deprotonated states of amino acid side chains in molecular mechanical force fields.


molecular dynamics
ion solvation
molecular mechanics
polarizable force field


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.