Mobilising Ion Mobility Mass Spectrometry in a Synthetic Biology Analytics Workflow

18 April 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chromatography based mass spectrometry approaches (xC-MS) are commonly used in untargeted metabolomics, providing retention time, m/z values and metabolite specific-fragments all of which are used to identify and validate an unknown analyte. Ion mobility-mass spectrometry (IM-MS) is emerging as an enhancement to classic xC-MS strategies, by offering additional separation as well as collision cross section (CCS) determination. In order to apply such an approach to a synthetic biology workflow, verified data from metabolite standards is necessary. In this work we present experimental DTCCSN2 values for a range of metabolites in positive and negative ionisation modes using drift time-ion mobility-mass spectrometry (DT-IM-MS) with nitrogen as the buffer gas. Creating a useful database containing DTCCSN2 measurements for application in metabolite identification relies on a robust technique that acquires measurements of high reproducibility. We report that 86% of the metabolites measured in replicate have a relative standard deviation lower than 0.2 %. Examples of metabolites with near identical mass are demonstrated to be separated by ion mobility with over 4% difference in DTCCSN2 values. We conclude that the integration of ion mobility into current LC-MS workflows can aid in small molecule identification for both targeted and untargeted metabolite screening which is commonly performed in synthetic biology.

Keywords

Ion Mobility
mass spectrometry metabolomics
Synthetic Biology

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.