The CHARMM36 Force Field for Lipids Can Be Used With More Accurate Water Models

13 April 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The CHARMM36 force field for lipids is widely used in simulations of lipid bilayers. The CHARMM family of force fields were developed for use with the TIP3P water model. This water model has an anomalously high dielectric constant and low viscosity, which limits its accuracy in the calculation of quantities like permeability coefficients. The TIP3P-FB and TIP4P-FB water models are more accurate in terms of the dielectric constant and transport properties, which could allow more accurate simulations of systems containing water and lipids. To test whether the CHARMM36 lipid force field is compatible with the TIP3P-FB and TIP4P-FB water models, we have performed simulations of DPPC and POPC bilayers. The calculated headgroup area, compressibility, order parameters, and X-ray form factors are in good agreement with the experimental values, indicating that these improved water models can be used with the CHARMM36 lipid force field without modification. The water permeability predicted by these models is significantly different; the TIP3P-model diffusion in solution and at the lipid--water interface is anomalously fast due to the spuriously low viscosity of TIP3P-model water, but the PMF of permeation is higher for the TIP3P-FB and TIP4P-FB models due to their high excess chemical potentials.


molecular dynamics
lipid bilayer
water model
computational chemistry


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.