Three-Component [1+1+1] Cyclopropanation with Ruthenium(II)

27 March 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report a one-step, Ru(II)-catalyzed cyclopropanation reaction that is conceptually different from the previously reported protocols that include Corey-Chaykovsky, Simmons-Smith, and metal catalyzed carbene attack on olefins. Under the current protocol, various alcohols are transformed into sulfone substituted cyclopropanes with excellent isolated yields and diastereoselectivities. This new reaction forms highly congested cyclopropane products with three new C–C bonds, three or two new chiral centers and one new quaternary carbon center. 22 examples of isolated substrates are given. Previously reported synthetic routes for similar substrates are all multi-step, linear routes that proceed with overall low yields and poor control of stereochemistry. Experimental mechanistic investigations suggest initial metal-catalyzed dehydrogenation of the alcohol substrate and catalyst independent stepwise attack of two equivalents of sulfone on the aldehyde under basic conditions. While the Ru(II) is only responsible for the initial dehydrogenation step, the rate of aldehyde formation is crucial to maintaining the right balance of intermediates needed to afford the cyclopropane product.

Keywords

cyclopropane
ruthenium
alcohol
esters
dehydrogenation
catalysis

Supplementary materials

Title
Description
Actions
Title
ChemRxiv SI Khaskin
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.