Temperature Dependence of the Air/Water Interface Revealed by Polarization Sensitive Sum-Frequency Generation Spectroscopy

02 March 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The temperature dependence of the vibrational sum-frequency generation (vSFG) spectra of the the air/water interface is investigated using many-body molecular dynamics (MB-MD) simulations performed with the MB-pol potential energy function. The total vSFG spectra calculated for different polarization combinations are then analyzed in terms of molecular auto-correlation and cross-correlation contributions. To provide molecular-level insights into interfacial hydrogen-bonding topologies, which give rise to specific spectroscopic features, the vSFG spectra are further investigated by separating contributions associated with water molecules donating 0, 1, or 2 hydrogen bonds to neighboring water molecules. This analysis suggests that the low frequency shoulder of the free OH peak which appears at ∼3600 cm−1 is primarily due to intermolecular couplings between both singly and doubly hydrogen-bonded molecules.


air/water interface
sum-frequency generation spectroscopy
hydrogen bonding
many-body potential energy functions

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.