Global and Local Reactivity Descriptors Based on Quadratic and Linear Energy Models for α,β-Unsaturated Organic Compounds

06 February 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Global and local descriptors of chemical reactivity can be derived from conceptual density functional theory. Their explicit form, however, depends on how the energy is defined as a function of the number of electrons. Within the existing interpolation models, here, the quadratic and the linear energy model were used to derive global descriptors as the electrophilicity and nucleophilicity (defined as the negative of the ionization potential) and local descriptors employing either the corresponding condensed fukui function in the linear model or the local response of the global descriptor in the quadratic model. The ability of these descriptors to predict the reactivity of molecules with more than one reactive site was first studied on a set of α ,β -unsaturated ketones, where experimental rate constants for the nucleophilic attack is known. With the validated descriptors the reactivity of α ,β -unsaturated carboxylic compounds with different heteroatoms as α ,β -unsaturated thioesters, esters and amides as alternative substrates for the enzymatic CO2 fixation studied experimentally by Erb et al. was addressed. The carbon dioxide fixation involves the reduction of the neutral α ,β -unsaturated carboxylic compounds by a nucleophilic attack of a hydride anion from NADPH and the following electrophilic attack by carbon dioxide. It was found that condensed values of the linear fukui function within the fragment of molecular response approximation describe best the reactivity of α ,β -unsaturated ketones. For the two relevant processes involved in CO2 fixation the amides present the largest reactivity in vacuum and in aqueous solution compared to the esters and thioesters and may, therefore, serve as alternative sustrates of carboxylases.


Reactivity descriptors
Fukui function
α ,β -unsaturated organic compounds


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.