Partition Coefficients of Methylated DNA Bases Obtained from Free Energy Calculations with Molecular Electron Density Derived Atomic Charges.

17 January 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have been also used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in vac- uum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account deriving the atomic charges of polar DNA bases and when the energy needed to polarize the electron den- sity of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogues. Comparison of the two partitioning methods Hirsheld-I and Minimal Basis Iterative Stockholder (MBIS) revealed some deficiencies in the Hirshfeld-I method related to nonexistent isolated anionic nitrogen pro-atoms used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values.


Free energy calculations
Partition coefficients
Hirshfeld-I atomic charges
MBIS atomic charges

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.