Toward Expanded Diversity of Host-Guest Interactions via Synthesis and Characterization of Cyclodextrin Derivatives

12 January 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Researchers developing software to predict the binding constants of small molecules for proteins have, in recent years, turned to host-guest systems as simple, computationally tractable model systems to test and improve these computational methods. However, taking full advantage of this strategy requires aqueous host-guest systems that probe a greater diversity of chemical interactions. Here, we advance the development of an experimental platform to generate such systems by building on the cyclodextrin (CD) class of hosts. The secondary face derivative mono-3-carboxypropionamido-β-cyclodextrin (CP-β-CD) was synthesized in a one-pot strategy with 87% yield, and proved to have much greater aqueous solubility than native β-CD. The complexation of anionic CP-β-CD with the cationic drug rimantadine hydrochloride was explored using one and two-dimensional nuclear magnetic resonance (NMR); NOESY analysis showed secondary face binding of the ammonium moiety of the guest, based on cross-correlations between the amic acid functionality and the side-chain of rimantadine. Isothermal titration calorimetry was furthermore used to determine the standard free energy and enthalpy for this binding reaction, and the results were compared with those of rimantadine with native β-CD.


force field

Supplementary materials

KellettGilson CD binding SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.