First-Principles Analysis of the Stability of Water on the Oxidised and Reduced CuO(111) Surface

30 October 2017, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We use fi rst-principles Density Functional Theory calculations with inclusion of the Hubbard +U correction (DFT+U) on the Cu 3d states, to investigate the interaction of water with the CuO(111) surface. We compute adsorption energies and the stability of different water coverages, with a particular focus on the interaction of water with oxygen vacancy sites, and how vacancy stabilization occurs. We study energetics, geometry and electronic structure of relevant confi gurations finding that there are only small changes to the local geometry around the water adsorption site(s) and the electronic properties. The inclusion of van der Waals interactions has no signi ficant impact on the stability of water on CuO(111). We extend the analysis to include realistic environmental conditions within the ab-initio atomistic thermodynamics framework, which allows us to assess the stability of the water/copper-oxide system as a function of ambient conditions, and focus on three important surface processes: water adsorption/desorption on the stoichiometric surface, conditions for dissociation, and oxygen vacancy stabilization.

Keywords

CuO
Water adsorption
Ab initio thermodynamics
oxygen vacancy energies
Chemistry

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.