Impact of surface hydroxylation in MgO-/SnO-nanocluster modified TiO2 anatase (101) composites on visible light absorption, charge separation and reducibility.

12 October 2017, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Surface modification with metal oxide nanoclusters has emerged as a candidate for the enhancement of the photocatalytic activity of titanium dioxide. An increase in visible light absorption and the suppression of charge carrier recombination are necessary to improve the efficiency. We have studied Mg4O4 and Sn4O4 nanoclusters modifying the (101) surface of anatase TiO2 using density functional theory corrected for on-site Coulomb interactions (DFT + U). Such studies typically focus on the pristine surface, free of the point defects and surface hydroxyls present in real surfaces. We have also examined the impact of partial hydroxylation of the anatase surface on a variety of outcomes such as nanocluster adsorption, light absorption, charge separation and reducibility. Our results indicate that the modifiers adsorb strongly at the surface, irrespective of the presence of hydroxyl groups, and that modification extends light absorption into the visible range while enhancing UV activity. Our model for the excited state of the heterostructures demonstrates that photoexcited electrons and holes are separated onto the TiO2 surface and metal oxide nanocluster respectively. Comparisons with bare TiO2 and other TiO2-based photocatalyst materials are presented throughout.

Keywords

Photocatalysts
TiO2
visible light absorption
surface modification
interface
charge separation
hydroxylation
oxygen vacancy
Chemistry

Supplementary materials

Title
Description
Actions
Title
SuppInfo
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.