Transition probability approach for direct calculation of coefficients of Configuration Interaction wave function

15 September 2017, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


To reduce the computation cost of Configuration Interaction (CI) method, a new technique is used to calculate the coefficients of doubly excited determinants directly from orbital energies, orbital overlap matrix and electron population obtained from Hartree Fock level run. This approach to approximate the coefficients of CI wave function is termed as transition probability approximated CI (TPA-CI). In principle, calculated dynamical electron correlation energy of TPA-CI and Full CI (FCI) are equivalent. It is observed that computed TPA-CI correlation energies of hydrogen, water, ammonia and ozone are very close to FCI values, within 5% error. The potential energy curve of the hydrogen molecule is also studied and it is found that the energy is minimum at its equilibrium bond length.


Transition Probability Approximation
Configuration Interaction
Potential Energy Curve


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.