Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse Grain Force Field

14 June 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Phosphoinositides are a family of membrane phospholipids that play crucial roles in membrane regulatory events. As such, these lipids are often a key part of molecular dynamics simulation studies of biological membranes, in particular of those employing coarse-grain models because of the potential long times and sizes of the involved membrane processes. Version 3 of the widely used Martini coarse grain force field has been recently published, greatly refining many aspects of biomolecular interactions. In order to properly use it for lipid membrane simulations with phosphoinositides, we put forth the Martini 3-specific parameterization of inositol, phosphatidylinositol, the seven physiologically relevant phosphorylated derivatives of phosphatidylinositol. Compared to parameterizations for earlier Martini versions, focus was put on a more accurate reproduction of the behavior seen in both atomistic simulations and experimental studies, including the signaling relevant phosphoinositide interaction with divalent cations. The models we develop improve upon the conformational dynamics of phosphoinositides in the Martini force field and provide stable topologies at typical Martini timesteps. They are able to reproduce experimentally known protein-binding poses as well as phosphoinositide aggregation tendencies. The latter were tested both in the presence and absence of calcium, and include correct behavior of PI(4,5)P2 calcium-induced clusters, which can be of relevance for regulation.

Keywords

PIP2
Martini force field
Martini 3 forcefield
phosphoinositide
parameterization

Supplementary materials

Title
Description
Actions
Title
SupplementaryInformation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.