Improving the Mechanical Durability of Superhydrophobic Coating by Deposition on to a Mesh Structure

31 August 2017, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Superhydrophobic surfaces (SHSs) require a combination of a rough nano- or microscale structured surface topography and a low surface energy. However, its superydrophobicity is easily lost, even under relatively mild mechanical abrasion, when the surface is mechanically weak. Here, we develop a method that significantly increases the mechanical durability of a superhydrophobic surface, by introducing a mesh layer beneath the superhydrophobic layer. The hardness, abrasion distance, flexibility and water-jet impact resistance all increase for the commercially available Ultra-ever Dry superhydrophobic coating. This is attributed to the increased mechanical durability offered by the mesh, whose construction not only increases the porosity of the SHS coating but acts as a third, larger structure, so that the superhydrophobic layer is now composed of a three-level hierarchical structure: the mesh, micropillars and nanoparticles.


superhydrophobic coating
mechanical durability
Ultra-ever Dry


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.