Liquid Marble Interaction Gate for Collision-Based Computing

24 August 2017, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Liquid marbles are microlitre droplets of liquid, encapsulated by self-organised hydrophobic particles at the liquid/air interface. They offer an efficient approach for manipulating liquid droplets and compartmentalising reactions in droplets. Digital fluidic devices employing liquid marbles might benefit from having embedded computing circuits without electronics and moving mechanical parts (apart from the marbles). We present an experimental implementation of a collision gate with liquid marbles. Mechanics of the gate follows principles of Margolus' soft-sphere collision gate. Boolean values of the inputs are given by the absence (False) or presence (True) of a liquid marble. There are three outputs: two outputs are trajectories of undisturbed marbles (they only report True when just one marble is present at one of the inputs), one output is represented by trajectories of colliding marbles (when two marbles collide they lose their horizontal momentum and fall), this output reports True only when two marbles are present at inputs. Thus the gate implements AND and AND-NOT logical functions. We speculate that by merging trajectories representing AND-NOT output into a single channel one can produce a one-bit half-adder. Potential design of a one-bit full-adder is discussed, and the synthesis of both a pure nickel metal and hybrid nickel/polymer liquid marble is reported.

Keywords

Liquid marble
Unconventional computing
Collision computing
Adder
Logic gate
Microfluidic
Chemistry
Information And Computing Sciences

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.