Fast Treatment of Noncovalent Packing Using Dispersion-Corrected Harris Approximate Density Functional Theory

16 August 2017, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The formation of molecular aggregates and assemblies is an important process across chemistry, biology, and materials science. In applications such as crystal structure prediction, a balance between high accuracy and computational speed is highly desirable. We present a new method for predicting approximate bimolecular potential curves using dispersion-corrected Harris approximate-density functional theory and an improved estimate of the bimolecular electron density. Our results on benzene dimer and thiophene dimer yield potential energy curves within a few percent of MP2 theory and a speedup of ~10x over conventional density functional methods. The code is highly parallel and gives greater speedups on larger systems and basis sets.


Intermolecular forces
Density Functional Theory
van der Waals interactions
crystal packings
organic electronics

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.