Tailoring Long-Range Superlattice Chirality in the Molecular Selfassemblies via Weak Fluorine-Mediated Interactions

08 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Controllable fabrication of the enantiospecific molecular superlattices is a matter of imminent scientific and technological interest. Herein, we demonstrate that long-range superlattice chirality in molecular self-assemblies can be tailored by tuning the interplay of weak intermolecular non-covalent interactions. Different chiral recognition patterns are achieved in the two molecular self-assemblies comprised by two molecular enantiomers with identical steric conformations, derived from the hexaphenylbenzene – the smallest star-shaped polyphenylene. By means of high-resolution scanning tunneling microscopy measurements, we demonstrate that functionalization of star-shaped polyphenylene with fluorine (F) atoms leads to the formation of molecular self-assemblies with the distinct long-range chiral recognition patterns. We employed the density functional theory calculations to quantify F-mediated lone pair F ···π, C-H··· F, F···F interactions attributed to the tunable enantiospecific molecular self-organizations. Our findings underpin a viable route to tailor long-range chiral recognition patterns in supramolecular assemblies by engineering the weak non-covalent intermolecular interactions.


chiral recognition
molecular self-assemblies
weak non-covalent interaction
Fluorine chemistry
scanning tunnelling microscopy


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.