Abstract
Actinium-based therapies could revolutionize cancer medicine but remain tantalizing due to the difficulties in studying Ac chemistry. Current efforts focus on small synthetic chelators, limiting radioisotope complexation and purification efficiencies. Here we demonstrate how a recently discovered protein, lanmodulin, can be utilized to efficiently bind, recover, and purify medically-relevant radiometals, actinium(III) and yttrium(III), and probe their chemistry. The stoichiometry, solution behavior, and formation constant of the 228Ac-lanmodulin complex (Ac3LanM, Kd, 865 femtomolar) and its 90Y/natY/natLa analogues were experimentally determined, representing both the first actinium-protein and most stable actinide(III)-protein species to be characterized. Lanmodulin’s unparalleled properties enable the facile purification-recovery of radiometals, even in the presence of >10+10 equivalents of competing ions and at ultra-trace levels: down to 2 femtograms 90Y and 40 attograms 228Ac. The lanmodulin-based approach charts a new course to study elusive isotopes and develop versatile chelating platforms for medical radiometals, both for high-value separations and potentially in vivo applications.