Improved pH-Controlled Release of Phenformin from Low-Defect Graphene Compared to Graphene Oxide

07 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Graphene-based drug carriers provide a promising addition to current cancer drug 8 delivery options. Increased accessibility of high-quality graphene made by plasma- enhanced chemical vapor deposition (PE-CVD) makes it an attractive material to re-visit in comparison to the widely studied graphene oxide (GO) in drug delivery. Here we show the potential of re-purposing the metabolic drug phenformin for cancer treatment in terms of stability, binding, and pH-controlled release. Using covalent attachment of polyethylene glycol (PEG) onto pristine (PE-CVD) graphene, we show that the PEG stabilized graphene nanosheets (PGNS) drug carrier is stable in aqueous solutions, exhibit a higher binding affinity towards phenformin than conventional GO. Moreover, we experimentally demonstrate an improved drug release in PGNS than GO in pH levels lower than physiological conditions comparable to an acidic tumor microenvironment.

Keywords

graphene
phenformin
stability
agglomeration
pH-dependent release
PEGylation
drug delivery
cancer treatment

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.