Synthesis, Photophysical Properties and Catalytic Activity of Ƙ3-SCS Pincer Palladium (II) Complex of N,N'-Di-Tert-Butylbenzene-1,3-Dicarbothioamide Supported by DFT Analysis

11 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The title complex [PdCl(L)] (1), is obtained from the reaction of SCS pincer ligand HL (where, HL = N,N'-di-tert-butylbenzene-1,3-dicarbothioamide) with lithium tetrachloropalladate (II) in methanol. The compound 1 is characterized by elemental analysis, FTIR, 1H, and 13C-NMR spectroscopy, UV-Vis spectroscopy, powder X-ray diffraction and X-ray crystallographic techniques. At room temperature, 1 emits luminescence light of wavelength 460 nm in the solid state upon excitation by UV light of wavelength 280 nm. The average emission lifetime indicates that, both the ligand and complex emission is fluorescence in nature and involves mainly ligand centers π-π* deexcitation. It also shows good catalytic activity towards Mizoroki-Heck and Suzuki-Miyaura cross-coupling reactions of aryl bromides with tert-butyl acrylate and p-tolylboronic acid respectively. For both type of reactions, more than 99% conversion of the substrates is found to occur for electronically activated p-nitro bromobenzene using 1 mol % of 1. Further, modern DFT calculations are performed to decipher the mechanistic insight on the preferable pathways of the Mizoroki-Heck cross-coupling reaction. Stepwise free energy of reactions for various probable reaction pathways suggest that the catalytic route has profound preference for Pd(0)-Pd(II) over Pd(II)-Pd(IV) pathway.


pincer complex
organometallic compound

Supplementary materials

Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.