Impact of Van der Waals interactions on structural and nonlinear optical properties of azobenzene switches

07 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The geometrical structures, relative Z-E energies, and second-order nonlinear responses of a collection of azobenzene molecules symmetrically substituted in meta- position with functional groups of different bulkiness are investigated using various ab initio and DFT levels of approximation. We show that RI-MP2 and RI-CC2 approximations provide very similar geometries and relative energies and evidence that London dispersion interactions existing between bulky meta-substituents stabilize the Z con- former. The !B97-X-D exchange-correlation functional provides an accurate description of these effects and gives a good account of the nonlinear optical response of the molecules. We show that density functional approximations should include no less than 50% of Hartree-Fock exchange to provide accurate hyperpolarizabilities. A property-structure analysis of the azobenzene derivatives reveals that the main contribution to the first hyperpolarizability comes from the azo bond, but phenyl meso-substituents can enhance it.

Keywords

van der waals
molecular switches
optical properties
nonlinear optical properties
quantum chemistry
DFT
MP2
CC2
PNOC
dispersion

Supplementary materials

Title
Description
Actions
Title
PCCP VdW Azobenzenes SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.