Abstract
Polyethylene terephthalate (PET) is one of the most abundantly used polymers, but also a significant pollutant in oceans. Due to growing environmental concerns, novel PET alternatives are highly sought after. Here we present readily recyclable PET analogues made entirely from woody biomass. Central to the concept is a two-step noble metal free catalytic sequence (Cu20-PMO catalyzed reductive catalytic fractionation and Raney Ni mediated catalytic funneling) that allows for obtaining a single aliphatic diol (PC) in 56.4% efficiency as well as other product streams convertible to fuels. The diol PC is co-polymerized with methyl esters of terephthalic acid (TPA) and furan dicarboxylic acid (FDCA), both of which can be derived from the cellulose residues, to obtain polyesters with competitive Mw and thermal properties (Tg of 70–90 °C). The new polymers show excellent chemical recyclability in methanol and are thus promising candidates for the circular economy.
Supplementary materials
Title
Wu Barta SupportingInformationMay20
Description
Actions