Combined Ligand and Structure Based Approaches Towards Developing Novel Renin Inhibitors for the Treatment of Hypertension

08 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hypertension is considered as the predominant risk factor for the onset of Cardiovascular disease (CVD) in the elder population. The chronic activation of Renin Angiotensin System (RAS) is considered as the primary causative factor for the inception of hypertension in geriatric population. Angiotensin Converting Enzyme (ACE) is a highly explored druggable target in the context of hypertension since this enzyme catalyses the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor. But clinical trials conducted on ACE inhibitors reported their incompetence in the effective treatment of hypertension. Hence, recent studies are focussing on renin, which is a central component of RAS in the regulation of blood pressure. The present study focuses on the elucidation of physicochemical properties of chemical compounds essential for renin inhibition and identification of novel renin inhibitors possessing enhanced potency as well as bioavailability. We have employed Molecular Field Topology Analysis (MFTA) as well as Structure Based Drug Design (SBDD) approaches for the accomplishment of above-mentioned objectives. MFTA approach were piloted on 45 indole-3-carboxamide derivatives by elucidating the significance of charge distribution as well as molecular size of chemical species in eliciting renin inhibition. Optimal model was obtained with Nf = 3, r2 = 0.81 , Q2 = 0.65. Molecular docking, atom-based binding free energy contributions and bioavailability assessments were carried out to identify most potent lead molecule among 45 compounds reported for renin inhibition. Further, new derivative molecules were predicted for the best lead molecule by employing chemical space exploration. All datasets, descriptor values, QSAR models for predictions usage and plots will be available in https://github.com/giribio/agingdata

Keywords

bioavailability assessment
chemical space explorations
docking
hypertension
MFTA
renin inhibitors

Supplementary materials

Title
Description
Actions
Title
Graphicalabstract
Description
Actions
Title
Supplementaryinformation
Description
Actions
Title
Figure 1
Description
Actions
Title
Figure 2
Description
Actions
Title
Figure 3
Description
Actions
Title
Figure 4
Description
Actions
Title
Figure 5
Description
Actions
Title
Figure 6
Description
Actions
Title
Figure 7
Description
Actions
Title
Figure 8
Description
Actions
Title
Figure 9
Description
Actions
Title
Figure 10
Description
Actions
Title
Figure 11
Description
Actions
Title
Figure 12
Description
Actions
Title
Figure 13
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.