A Tale of Two Bioconjugations: pH Controlled Divergent Reactivity of Protein A-Oxo Aldehydes in Competing A-Oxo-Mannich and Catalyst-Free Aldol Ligations

07 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Site-selective chemical methods for protein bioconjugation have revolutionised the fields of cell and chemical biology through the development of novel protein/enzyme probes bearing fluorescent, spectroscopic or even toxic cargos. Herein we report two new methods for the bioconjugation of a-oxo aldehyde handles within proteins using small molecule aniline and/or phenol probes. The ‘a-oxo-Mannich’ and ‘catalyst-free aldol’ ligations both compete for the electrophilic a-oxo aldehyde which displays pH divergent reactivity proceeding through the “Mannich” pathway at acidic pH to afford bifunctionalised bioconjugates, and the “catalyst-free aldol” pathway at neutral pH to afford monofunctionalised bioconjugates. We explore the substrate scope and utility of both these bioconjugations in the construction of neoglycoproteins, in the process formulating a mechanistic rationale for how both pathways intersect with each other at different reaction pH.


bioconjugation tools
protein ligation methods

Supplementary materials

Supp Info 04 6 21


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.