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Abstract

We propose an active learning (AL) framework to develop force fields (FFs) that accu-

rately model the potential energy surfaces (PES) of gas/solid atomic-scale complexes. A cen-

tral challenge is integrating AL with flexible, physics-aware potentials to achieve quantum-

level accuracy for complex interfacial systems. Our approach trains physics-aware potentials,

with incorporated flexibility and smoothness, on actively sampled Density Functional Theory

(DFT) data to describe interactions between undercoordinated atomic silver (Ag) clusters and

gaseous pollutants (CO2, CO, SO2), relevant for environmental applications like sensing. The

AL process follows three stages: (1) FFs are trained using adaptable physics aware potentials
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of semi-empirical descriptors, optimized via a Pareto analysis scheme; (2) refined FFs gen-

erate candidate structures through Metropolis Hastings Monte Carlo (MHMC) or stochastic

molecular dynamics (sMD); (3) a subset of candidates is selected for DFT labeling based on

an outlier score (OS), which utilizes the existing data descriptor distributions, ensuring diverse

PES exploration. This framework produces FFs capable of capturing cohesive, physisorption,

and chemisorption interactions with accuracy comparable to ab initio methods and advanced

machine learning models, while retaining the efficiency of semi-empirical potentials. Our

methodology is highly versatile, easily accommodating various choices of descriptors, model

basis sets, and sampling techniques.

1 Introduction

The holy grail in the development of atomistic models, necessary for performing atomistic molec-

ular dynamics (MD) or Monte Carlo (MC) simulations, is to obtain classical force fields (FFs) of

high accuracy and computational efficiency. A promising route to address this challenge is based

on active learning (AL) approaches. These involve strategic selection of quantum chemical data,

often obtained through computationally expensive density functional theory (DFT) calculations,

and the active training and refining of machine-learned FFs on diverse data, generated via efficient

exploration schemes of the underlying potential energy surface (PES).1–8 Such machine-learned

FFs, although highly accurate, present high computational costs compared to semi-empirical po-

tentials that rely on physically justified potential energy terms when applied to long MD simula-

tions.9–13 At the same time, for MD simulations to have a profound impact on material properties

prediction and design, long simulations, nowadays of the order of microseconds (µs), are required.

Therefore, semi-empirical potentials are practically still used in the majority of simulation studies

for complex molecular systems. An important question is whether AL approaches can be effec-

tively combined with low-cost, physics-informed models.

Any atomistic model that describes the PES of an underlying molecular system via predefined

descriptors of the atomic environment should have certain properties. These include invariances to
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Euclidean transformations (translation, rotation, reflection) and permutation of chemically equiv-

alent atoms, FF smoothness (implies continuity), and (the most challenging) faithfulness; that is,

each configuration should be described by a unique descriptor.14–16 In practice, besides faithful-

ness, the above properties are inherently satisfied by the choice of the descriptor and the potential

form, i.e., the functional basis set used to describe the underlying PES. For example, the descriptors

in popular semi-empirical FFs used in soft matter, like OPLS,10 and COMPASS,12 are the bond

lengths, the bond angles, the dihedral angles, and pairwise distances between non-bonded atoms.

Models such as the embedded atom model (EAM) and modified EAM,11,13 applied in solid-state

of matter, such as metals, include many-body interactions via a scalar density descriptor, which

counts the effective number of neighbors of each atom by expanding on pairwise distances and,

hence, preserving pairwise-like efficiency.

FFs developed by Machine Learning (ML) methods are practically extended functional basis

sets describing n-body interactions, which are of quantum origin, at the classical level.14–26 Func-

tional many-body representations, such as the Smooth Overlap of Atomic Positions (SOAP), are

commonly used in kernel-based ML methods to predict by interpolation energies and forces, using

the similarity of the new descriptor vector with the reference data.15,23,27–29 In a similar way, neural

network (NN) models are used to represent many-body interactions, usually using complex non-

linear mappings of atomic descriptors to accurately compute the interaction potential.5,14,17,22,24,25

Such ML models demonstrate high accuracy (1-10 meV/atom), but their computational cost scales

linearly with the size of the reference data or of the NN. They are also prone to overfitting and may

predict unrealistic energy values when extrapolating beyond their training domain.1,17,21,27,29–31

Finally, significant improvement in the extrapolation ability of the model could be achieved by

considering physics-aware 2- and 3-body descriptors, like pairwise distances, in combination with

extended ML basis sets.21

Extrapolation and overfitting issues show that adequately sampling the PES is crucial. To ad-

dress this, AL algorithms are often used to ensure diversity in training data.1,2,4–7,31–33 For instance,

Vandermause et al.31 used the inherent uncertainty in a Gaussian process regression model to de-
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cide whether to accept its prediction or perform a DFT calculation during temperature-annealing

MD simulations of crystalline materials. Kulichenko et al.4 used metadynamics to sample differ-

ent local minima of the PES and estimated model uncertainty via the disagreement among multiple

NN models capturing proton transfer in glycerine. Wilson et al.32 developed a batch AL scheme

that enhances the training set with various structures selected from a pool of data generated by

ab initio MD simulations of germanium selenide (GeSe). In each AL iteration they selected the

most dissimilar structures with existing data, based on the Euclidean distance of the feature vec-

tors. Moreover, their model was based on 2- and 3-body terms resembling semi-empirical forms.

In another recent work, Bernstein et al.6 developed a batched AL scheme that samples new data

based on structural dissimilarity, using energy minimization trajectories to explore different PES

local minima and, hence, stable structures of crystalline materials.

The studies referred above are very promising, but they consider either crystalline solid-state

phases, small isolated molecules, or water clusters. In contrast, to the best of our knowledge, com-

plex interfaces and/or undercoordinated hybrid materials have not yet been addressed. Examples

include systems associated with important technological applications that rely on molecules ad-

sorbed on surfaces34 and gas/metal hybrids,35 relevant to emerging environmental challenges such

as pollutant detection, clean energy production and decarbonization. For example, atomic silver

nanoclusters are very promising for gas sensing applications due to the different gas adsorption

characteristics, which could be either of physisorption, or chemisorption character and of different

interaction strength.35 Moreover, they can be readily produced by innovative gas-phase synthesis

methods, such as atmospheric-pressure spark ablation.36These systems are extremely challenging

in terms of modeling, as they exhibit an extremely rough PES and are characterized by a variety

of complex quantum chemical interactions within scales of a few Å, Moreover, adsorption, des-

orption or nucleation around solid nanoclusters phenomena occurs on a wide range of time scales,

from a few fs that corresponds to adsorption of single molecules to atomic clusters, up to several

µs, relevant to cluster nucleation.37,38

To address the above challenges, the development of accurate and preeminently efficient atom-
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istic FFs is essential. Moreover, the FF basis set should be tunable to different characteristic inter-

actions and, ideally, transferable over a range of systems with different cluster sizes and tempera-

tures. Additionally, the potential form should be generic and systematically improvable through a

suitable AL framework that efficiently explores the PES.

Here we employ a batch AL strategy that actively trains generalized forms of semi-empirical

potentials by exploring and sampling the PES at the DFT level. We apply it to a variety of com-

plex interfacial systems, i.e., isolated silver (Ag) atomic clusters (of 7-16 atoms), and on CO2/Ag,

CO/Ag, SO2/Ag undercoordinated atom sized hybrids. The FF basis set follows physically aware

descriptors, e.g., bond distances and bond angles, pairwise distances between atoms and embed-

ding densities that describe the local environment. Their dependency to the potential energy is

direct, similar to the physically aware semi-empirical potential forms like Morse; moreover, our

model also incorporates flexibility by considering potential curves of arbitrary shape, parameter-

ized via, respectively, the flexible Bezier polynomials39 (see Sections 2.1 and 2.2). Such param-

eterization allows for a smooth (continuously differentiable) and controllable potential that, with

only a few extra training parameters, can capture complex underlying physicochemical interac-

tions. Using Bezier polynomials, we include flexible pairwise corrections and flexible many-body

potential terms. Part of the model captures the essential physics, while another part introduces the

necessary flexibility to fit complex quantum deviations. In addition, this model maintains pairwise

efficiency and, as we will show, it is transferable with a small trade-off in accuracy across different

atomic cluster sizes. Even more importantly, the derived family of models is capable of describ-

ing very rough PES of the atom-sized gas/metal hybrids with quantum accuracy, via relatively

simple physics-aware cost-efficient basis functions, without the need to consider more complex

descriptors commonly used in ML FFs.17
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2 Methods

The overall AL methodology is summarized in Figure 1. First, an initial dataset is used for train-

ing. Due to numerical noise of the DFT data (data uncertainty) and perhaps inadequacies of the

model (model or epistemic uncertainty), minimizing the differences between improving the fit on

the force labels may worsen the fit in energy labels and vice versa. Our training method minimizes

the energies cost at descending values of forces cost, finding Pareto optimal solutions. We keep

the solution that exhibits the best trade-off between the energy cost and the force cost (see Section

2.3). In the next step, the trained or refined FF is used to generate a large pool of new candidate

gas/cluster hybrid structures (here 40,000) via either Metropolis Hastings Monte Carlo (MHMC)

or stochastic Molecular Dynamics (sMD) simulations (see Section 2.4). Since they are generated

using the model, these candidates are unlabeled (no ground truth values of energies and forces).

From these, a small subset of structures (here a batch of 200) is selected with a probability propor-

tional to each candidate’s outlier score (OS). The latter is quantified based on the overlap of each

new descriptor to the corresponding descriptor distribution of the existing data. This algorithm pro-

motes selection of out-of-distribution or rarely occurring structures (see Section 2.5), and hence,

the structures that have not yet been "seen" during training. In the final step, the selected data

undergo DFT labeling and are used for performance evaluation and augmentation of the dataset

for the next AL iterations. This is an effective way to actively sample and explore new regions of

the PES, augmenting the dataset with diverse structures. The labeled dataset at each AL iteration

is referred as existing (e).

The proposed AL-based methodology does not explicitly depend on the model itself, nor on

the type of the descriptors. Any model, functional basis set, and any set of descriptors could be

used that respect the permutational, translation, and rotational invariance, such as NNs that utilize

symmetry functions as their input descriptors or kernel methods.14,15,25 Finally, our algorithm

effectively generates the training data, since it can be initiated by just one point per chemical

system, as we demonstrate in Section 3. In this context, exploiting and labeling out-of-distribution

candidates becomes even more important, since ideally we would like to perform as fewer DFT
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calculations as possible.

Figure 1: Schematic of the active learning (AL) methodology. Beginning from an initial labeled
dataset, with as many as 1 structure per system, we train the model by finding Pareto optimal solu-
tions and choosing the one that shows the best trade-off between the energies cost and forces cost.
In the second step, using either Metropolis Hastings Monte Carlo (MHMC) or stochastic Molec-
ular Dynamics (sMD) a large pool of candidate structures (here, 40,000) is generated. MHMC is
performed on 100 parallel paths, starting from respectively 100 initial configurations, chosen ran-
domly from the existing labeled dataset. A single longer trajectory is acquired using sMD, starting
respectively from 1 random configuration from the existing dataset. In the next step, for each
candidate, an outlier score (OS) is computed and a subset (batch) of these structures is selected
(here 200), via a probability proportional to OS. DFT is performed on the selected structures to
label their energies and forces. The newly labeled batch is used for performance evaluation and
augmenting the existing dataset in the next AL iterations.

The subsections below describe in detail (a) the classical representation of the complex gas/cluster

hybrid PES (classical model) and (b) its parameterization, each step of the AL methodology, in-

cluding (c) the training procedure, (d) the candidate sampling methods, (e) the OS quantification

method, and (f) the data labeling methods, DFT settings and performance metric. Finally, (g) we

provide a small description of the AL initialization and the code.

2.1 Classical description of gas/cluster PES

The initial part of any classical model concerns the choice of the appropriate descriptors that de-

scribe the underlying many-body, of quantum origin, PES. Here a physics aware parametrization of
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the complex PES of the gas/atomic cluster hybrid is proposed as the sum of bonded (UB(r)), pair-

wise non-bonded (UPW (r)) and embedding (UE(r)) contributions, using the following functional

basis set

Uclass(r) =UB(r)+UPW (r)+UE(r). (1)

The bonded terms in the above expression include interactions describing chemical bonds, bond

angles, and dihedral angles as

UB(r) = ∑
b

fb(rb)+∑
a

fa(θa)+∑
d

fd(φd) (2)

where rb is the length of the bond indexed by b, θa the bond angle indexed by a, φd the dihedral

angle indexed by d, and fb, fa, fd are functions used to describe interactions between chemical

bonds, angles and dihedrals respectively. The pairwise terms are of the general form

UPW (r) = ∑
i< j

fpw(ri j) (3)

where ri j is the distance between non-bonded atoms i and j and fpw the functions that describe

the pairwise interactions. Last, the embedding contributions that typically describe the many-body

terms that correspond to the local chemical environment

UE(r) = ∑
i,β∈Bi

fe

(
ρ

i
αβ

)
(4)

where the sum runs over all central atoms i, α is the ithst atom chemical species, β runs over the

neighboring chemical species of i denoted as the set Bi and fe are properly chosen embedding func-

tions. We should stress that in the latter model, despite that it accounts for many-body interactions,

forces reduce to pairwise summations, and therefore the computational efficiency is preserved.40,41

fb, fa, fc, fpw, and fe are the basis functions (potential curves) to be optimized given the current

training set. The above representation is a generalized flexible form of a semi-empirical FF with

an arbitrary shape of the potential curves f and direct dependence on the physics aware descriptors
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(here, pairwise distances, embedding densities, bond distances and bending angles). We should

also note that it is quite straightforward to introduce additional terms in the above functional basis

set such as neural networks or Gaussian processes that are typically used in ML-based classical

force fields.

The embedding part of the model, that is of great importance for the accurate description of

many-body interactions, is further clarified below. Each density description of a central atom i of

type α , ρ i
αβ

, is calculated by

ρ
i
αβ

= ∑
j∈β

ϕ(ri j) (5)

where j runs over all neighboring atoms of type β , ri j is the distance of the atom j to the central

atom and ϕ(r) is the Lucy activation function (see Supporting Information (SI) Section S1 and

Figure S1) Such symmetry function has been employed in coarse grained modeling and they have

been implemented in Lammps MD software,40,42,43 however, to the best of our knowledge it is the

first time that they are used in atomistic modeling of interfacial systems. Taking the derivatives it

is easy to see that the force on atom i, of type α from embedding contributions of atoms of type β

is given by

Fi =−∑
j∈β

∂ fαβ (ρ
i
αβ

)

∂ρ
+

∂ fβα(ρ
j

βα
)

∂ρ

 dϕ(ri j)

dr
ri− r j

ri j
(6)

The first term corresponds to embedding i into the atomic environment of β type atoms at positions

r j. The second term is the contribution by atom i when embedding atom j of type β in the atomic

environment of α type atoms. Preeminently, equation (6) demonstrates that the calculation of

forces reduces to pairwise summations.

2.2 Parameterization

All functions are parameterized partially or completely with Bezier polynomials,44 instead of the

commonly used cubic splines.40,45 Each embedding term is parameterized with a single Bezier

curve, while pairwise terms are parameterized via the superposition of a Morse potential and a
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flexible Bezier curve. Bonds and bond angles are also considered for the covalent interactions in

CO, CO2 and NO2 molecules, using a superposition of a Morse and Bezier curves and a harmonic

potential, respectively. The parameterization of the model’s different energetic contributions is

summarized below:

fb(r) = fMorse(r;De,re,α)+ fBezier(r;k)

= De

[
1− e−a(r−re)

]2
+ fBezier(r;k) (7)

fa(θ) = fharmonic(θ ;θ0,k) = k(θ −θ0)
2 (8)

fpw(r) = fMorse(r;De,re,α)+ fBezier(r;k)

= De

[
e−2a(r−re)−2e−a(r−r0)

]
+ fBezier(r;k) (9)

fe(ραβ ) = fBezier(ραβ ;k) (10)

where terms on the right of ";" denote the training parameters to be optimized. Note that Morse

potentials for bonded interactions possess a minimum at zero energy, since bonded interactions

describe the internal deformation of the molecule, where the DFT energy is also set to zero at the

energetically minimized configuration. Moreover, adding fBezier in the bonded part fb(r), offers

more flexibility, which is especially useful when bonded interactions are modified by the presence

of other materials in the environment such as Ag atomic clusters (e.g. molecules chemisorbed to

the cluster).

Notice that a part of the potential preserves physical awareness, while Bezier curves add the

necessary flexibility to capture complex physicochemical interactions. Bezier curves preserve

some advantages such as smoothness, continuity, controllability of the shape of the curves with

only a few more training parameters (8-13 per curve), compared to the commonly used cubic

splines that preserve locality.39 However, to our knowledge, this parameterization scheme has

never been used before in the development of atomistic models. Detailed information on the

Bezier curves and their current implementation is provided in the SI, while a demonstration of

their construction is shown in Figure S2.
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From here in, we denote the descriptors by a single vector d per structure. Therefore, the total

energy of the system might be written as a function of d and a parameter set P, which defines the

shape of the curves.

2.3 Model Training

To optimize the classical gas/atomic cluster hybrid model, we consider both the energy loss (LE)

and the force loss (LF ) defined as the mean square error (MSE) over energy and force data derived

via DFT calculations per each configuration as

LE(d(r);P) =
(
U(d(r);P)−Ed f t [r]

)2

LF(d(r);P) =
1

3na

na

∑
j

3

∑
k

(
F j,k

(d(r);P)−F j,k
d f t [r]

)2
(11)

where d, denotes the set of the classical descriptors (e.g., pairwise distances and embedding densi-

ties) of the model, which are a function of the configuration r, P is the set of training parameters, U

and E denote the classical and DFT energies respectively, F j is the force on each atom j, k denotes

the direction, na is the number of atoms, and overline symbols denote normalized values such that

U(d(r);P) =
U(d(r);P)−µE

σE

Ed f t [r] =
Ed f t [r]−µE

σE

F(d(r);P) =
F(d(r);P)−µF

σF

Fd f t [r] =
Fd f t [r]−µF

σF
(12)

where µE , σE is the mean and standard deviation of the DFT energy data and µF , σF is the mean

and standard deviation of the DFT forces. Denoting D the training set data, the energy cost (CE),

11

https://doi.org/10.26434/chemrxiv-2025-gckv8 ORCID: https://orcid.org/0000-0001-5076-4971 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-gckv8
https://orcid.org/0000-0001-5076-4971
https://creativecommons.org/licenses/by-nc-nd/4.0/


and the force cost (CF ) are defined as

CE(D,P)) =
1
nd

nd

∑
i
(U(d(ri);P)−Ed f t [ri])

2 (13)

CF(D,P)) =
1

3ndna

nd

∑
i

na

∑
j

3

∑
k
(F j,k

(d(ri);P)−F j,k
d f t [ri])

2 (14)

where nd is the number of configurations or equivalently data points. To find the optimal set of

parameters we initially solve the optimization problem

P0 = argmin
P

CE(D,P))+λ ||P|| (15)

where λ is a constant regularization parameter. Using the initially estimated solution P0 and eq.

(15) we compute the C0
F(D,P0). Then, we iteratively minimize the energy cost at successively

lower values of the force cost, by setting an equality constraint for force cost at successively lower

values. The overall training algorithm is shown below:

Algorithm 1 Iterative Optimization of P
P0← argminP (CE(D,P)+λ ||P||)
C0

F ←CF(D,P0)
for k = 1 to nS-1 do

Compute constraint value: ck←C0
F ×

nS−k
nS

Solve the optimization problem:
Pk← argminP (CE(D,P)+λ ||P||)

subject to: CF(D,P)− ck = 0
end for

The successive constraint optimization problems are solved via the gradient-based Sequential

Quadratic Programming (SQP) method,46 starting from various randomized initial parameters.

Solving for k = 0,1, . . . ,nS−1 provides respectively, nS different solutions, given that the equality

constraints can be satisfied. Here we set nS = 15. Note that during optimization CE and CF should

in principle be non-conflicting objectives; however, this might not be the case due to noise in

the data and the (relatively small) size of the dataset. Moreover, considering only energies may

result in a solution in the training parameter space that does not necessarily minimize CF , due to
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overfitting of particular energetic contributions. This is an efficient framework not only to find

Pareto optimal solutions but to evaluate different ones. We select the solution that has the best

trade-off between the two using the selection metric

Cm =
√

C2
E +C2

F (16)

Finally, we split the existing data during each AL iteration into a training (train) and a development

(dev) set in 80/20%, respectively. The training set is used in algorithm 1, while the development

set is used to evaluate Cm and select the best solution.

2.4 Candidate Sampling via Stochastic Methods

The refined FF at each AL iteration is used to generate new candidate structures for labeling.

When the initial dataset is extremely small (<10 points) 10 new candidates per point are generated

by adding a small random Gaussian noise (∼ N(0,0.02) in Å) to the initial structures . For early

stage models, here between the 2nd up to the 10th AL iterations, candidates are generated via many

(here 100) parallel Metropolis-Hastings Monte Carlo (MHMC) simulations, starting from different

initial structures, chosen randomly from the existing labeled data. If the existing data structures,

we choose all of them. On each step, a random Gaussian perturbation (∼ N(0,σ)), where σ

is autotuned (discussed below), on one randomly selected atom is applied. The proposed (new)

structure is accepted as candidate one with probability

min
(

1,e−ba(U(dnew;P)−U(dold ;P))
)

(17)

where ba = 1/kBTa, kB is the Boltzmann constant and Ta is an annealing temperature that becomes

higher as we accept new data, following the rule

Ta = Tsmin
(

1,2
Nacc

Ntot

)
(18)
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where Ts is the maximum sampling temperature, Nacc is the number of accepted structures and Ntot

is the total number of desired candidate structures, here set to 40,000. Hence, half of the structures

are sampled at increasing temperature values between 0 and Ts and half at the maximum sampling

temperature. Note that in such small systems temperature is ill-defined; therefore Ts is an effective

hyperparameter that controls the extent of the energy distribution and energy fluctuations.

The reasoning behind the slow increase of Ta to Ts is twofold: (a) It allows for a smooth scan

near PES local minima and (b) can effectively capture transition phenomena that may happen at

unknown temperatures, below a hypothesized Ts, like desorption of the gas molecules to the atomic

clusters. Such phenomena may be very fast at high effective temperatures and extremely slow at

low ones, where in both cases information on the path of this structural rearrangement may be lost.

Slowly increasing Ta allows for smoother transitions.

Finally, the step length σ is autotuned such that the acceptance ratio (AR) remains between 0.2

and 0.5. It is not allowed to exceed 0.2 Å and does not go below 0.001 Å. If the running mean of

the AR is below 0.2 σ , it is multiplied by 0.99, while if it is above 0.5, it is divided by 0.99. The

initial σ is set to 0.02 Å. Moreover, the first 100 MC steps are used for equilibration and therefore

no structures are accepted. This MC sampling procedure ends when Nacc ≥ Ntot .

For later stage models, after the 10th AL iteration, stochastic molecular dynamics, sMD, (Langevin

dynamics) simulations are used starting from one initial configuration. The system runs for 2 ns,

with a timestep of 0.1 fs to avoid plausible numerical instabilities, especially of early stage models.

The damping factor used to calculate the friction forces as described by ref47 was set to 1 fs. Struc-

tures are sampled every 50 fs, resulting in 40,000 candidate structures. In contrast to MC sampling,

we chose just one initial configuration from the existing dataset, which is energetically minimized.

In the first 1 ns, we anneal the temperature from 1 K to Ts, similarly to the MC sampling procedure.

sMD is performed using the open source software LAMMPS.42
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2.5 Data Selection & Outlier Score

Next, our goal is to select, from the above pool of many (here 40,000) candidate structures, a

relatively small subset (here we use a predefined batch of nbatch=200 structures) for DFT labeling.

The selected configurations are used to evaluate the performance of the model and at the same time

enrich our dataset for the next iteration of the AL-based optimization scheme. For this, we use a

metric of the variability of the candidate structures with respect to the structures in the existing

dataset. In more detail, the selection probability of each structure is proportional to its computed

outlier score (OS) which is calculated as follows:

For each element d in the descriptor vector d= [d1,d2, . . . ,dm]
T of a given (candidate) structure,

we compute a distribution overlap parameter:

ω(d) =
∫ hup

hlow

h(x)e−a(x−d)2
dx (19)

where h(x) represents the histogram density of the descriptor element d (which is also an estimate

of the probability distribution function) in the existing data set, x is an integration parameter, hlow

and hup denote the lower and upper bounds of the distribution, respectively, and a is a scaling pa-

rameter set as a = hup−hlow. For example, if d represents a specific pairwise atomic distance in a

candidate structure, then h(x) denotes the probability distribution function (PDF) of this distance

in the existing dataset. The overlap of the distribution ω(d) is effectively a smooth approximation

of the density of the histogram at d and practically a measure of the variability of a new candi-

date configuration with respect to the underlying probability distributions of each element in the

descriptor vector. This value is normalized as

ω(d) =
ω(d)−ωmin

ωmax−ωmin

15

https://doi.org/10.26434/chemrxiv-2025-gckv8 ORCID: https://orcid.org/0000-0001-5076-4971 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-gckv8
https://orcid.org/0000-0001-5076-4971
https://creativecommons.org/licenses/by-nc-nd/4.0/


where

ωmin = min
z

(∫ hup

hlow

h(x)e−a(x−z)2
dx
)

∀ z ∈ [hlow,hup] (20)

ωmax = max
z

(∫ hup

hlow

h(x)e−a(x−z)2
dx
)

∀ z ∈ [hlow,hup] (21)

Note that, here, z is just a minimization or maximization parameter and ωmin and ωmax depend only

on the distribution h(x). ω(d) takes values in [0,1], when d is within the range of the distribution

[hlow,hup] and can take negative values if ω(d) < ωmin, which denotes out of distribution data.

Especially at the early stages of the AL iteration where h(x) is very narrow and ωmax−ωmin is

small ω(d) may take highly negative values.

In the case of a one-dimensional descriptor vector, selecting data with a probability of 1−ω(d)

favors out-of-distribution or rare data points. Therefore, the outlier score OS is computed by

OS(d) = 1−ω(d) (22)

and each new candidate is selected via a probability

s ∝
OS−OSmin

OSmax−OSmin
(23)

where OSmin and OSmax are the minimum and maximum OS values in the set of the current can-

didates. The latter normalization ensures that the selection probability is much higher for the

relatively more deviating candidates. Extended discussion and example distributions of h(x) and

their corresponding OS computation is provided in Figure S3 in the SI.

For a multi-dimensional descriptor vector d ∈ Rm, as is the case in this work,

OS(d) =

(
1
m

m

∑
i=1

(1−ω(di))
3

)1/3

(24)

where the power mean is used to emphasize larger values of 1−ω(d), ensuring that rare or out-of-
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distribution descriptor values contribute more to the OS.

2.6 Data Labeling & Performance Evaluation

In the above framework Ed f t and Fd f t denote the label energy and forces calculated from DFT.

The absolute value of the energy calculated at the DFT level should be modified according to the

nature of the underlying interactions embodied in the form of U(r). For the case of isolated atomic

metal nanoclusters the energy is Ed f t := Ecoh, where coh denotes cohesive interactions, so that

Ucoh(r)≈ Ecoh[r] for all plausible configurations r. For the notation below let the subscript denote

the nature of the interaction and the superscript the structures involved. Let cl and gas denote the

structure of the cluster and gas respectively. No subscript denotes the total energy of the system.

Then, the cohesive energy for the cluster is given by

Ecl
coh[r

cl] = Ecl[rcl]−∑
t

ntE1atom
t [r1atom] (25)

where t denotes the different atom types, nt the number of atoms of that type and E1atom
t [r1atom] is

the energy of one atom of type t. The cluster deformation energy is given by

Ecl
de f [r

cl] = Ecl[rcl]−Ecl
min[r

cl
min] (26)

where min denotes the minimum total energy and the corresponding structure. Similarly for the

gas,

Egas
de f [r

gas] = Egas[rgas]−Egas
min[r

gas
min] (27)

Now, let the interaction energy in the cluster/gas complex (cg)

Ecg
int [r

cg] = Ecg
ads[r

cg]−Ecg
de f [r

cg] (28)
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where,

Ecg
ads[r

cg] = Ecg[rcg]−Ecl
min[r

cl
min]−Egas

min[r
gas
min] (29)

and

Ecg
de f [r

cg] = Ecl
de f [r

cl]+Egas
de f [r

gas] (30)

Plugging equations (29), (30), (26) and (25) into (28) and after elimination of terms

Ecg
int [r

cg] = Ecg[rcg]−Egas
min[r

gas
min]−Egas

de f [r
gas]−Ecl

coh[r
cl]

−∑t ntE1atom
t [r1atom]

(31)

which may be rearranged as

Ecg
int [r

cg]+Egas
de f [r

gas]+Ecl
coh[r

cl] = Ecg[rcg]

−
(
Egas

min[r
gas
min][r

cg]+∑t ntE1atom
t [r1atom]

) (32)

The latter form is particularly convenient. First, for each data point, only the total energy of

the complex Ecg[rcg] must be calculated since the remaining terms on the right-hand side of the

equation are calculated only once and their sum is denoted by Ere f . Most importantly, it allows

one to tackle all the interactions simultaneously by assuming that

Ucg
int(r

cg)+Ugas
de f (r

gas)+Ucl
coh(r

cl)≈ Ecg[rcg]−Ere f := Ed f t (33)

The above formulation assumes that the cluster/gas interaction, the gas deformation, and cluster

cohesive interactions are decoupled. Hence, it allows tackling the cluster/gas system together with

their isolated cluster and gas counterparts, augmenting the dataset in the sense that we effectively

label the energy of the cluster/gas system at well-separated distances. This is particularly important

for learning the different energetic contributions of eq. (33).
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2.6.1 Density Functional Theory Settings

All DFT calculations were performed using the Gaussian software.48 with ωB97XD hybrid func-

tional and the def2SVP basis set.

2.6.2 Performance Metric

After we label the new structures with DFT energies, we evaluate the performance of the new

model via the mean absolute error (MAE), defined as

MAE(D,P) =
1
nd

nd

∑
i
|U(d(ri);P)−Ed f t [ri]| (34)

Note that this metric is used for the evaluation of the model and not during the training; for the

latter, the iterative optimization scheme, including energies and forces, is used.

2.7 Active Learning Initialization

The AL procedure may start by using one or more configurations from one system or a collection

of systems. If a collection of systems is used, then the algorithm will assume different interactions

based on the type of chemical elements. For example, including in the initial dataset Ag clusters

of different sizes, the algorithm will train one model describing interactions between Ag atoms for

all the different cluster sizes. All initial structures were obtained from the work of Mohammadi et.

al..35 and were re-optimized using the current DFT settings.

2.7.1 Code

The code, written mainly in Python 3 and bash, is a package of scripts that automatically commu-

nicates with the high-performance facility scheduler SLURM and, respectively, performs the DFT

calculations in parallel using the Gaussian software. Similarly, it automatically communicates with

LAMMPS. The code takes as input one single input file, which includes the settings and an ini-

tialization of the model parameters. All model parameters may be considered as fixed or training
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parameters, allowing for transfer learning options.

3 Results and Discussion

3.1 Application to the Ag7CO2 hybrid

We apply the AL algorithm to a diverse range of systems characterized by varying physicochem-

ical interactions, demonstrating the broad applicability of our approach. These systems include

undercoordinated Ag clusters governed by cohesive interactions, due to metallic bonds, as well

as Ag/gas atomic cluster hybrids, where both strong physisorption and chemisorption interactions

complicate the PES. Note also that models developed in the bulk phase, such as EAM,11 are not

suitable, exactly due to the heterogeneous coordination of these systems. In addition, we explore

different cluster sizes to assess the robustness of the algorithm. To illustrate its effectiveness and

behavior, we first employ the method to actively optimize the FF describing the interactions within

the Ag7CO2 hybrid (comprising 7 Ag atoms and one CO2 molecule). We then validate its general

applicability and transferability in Section 3.2.

Throughout this work, we assume that the covalent interactions of the gas molecule, the cohe-

sive forces among the metallic atoms, and the gas/metal interactions are decoupled (see eq. (33)).

Consequently, the cohesive metallic interactions and the covalent interactions in the gas molecule

can, in principle, be optimized independently of the metal/gas ones. Indeed, we use the AL algo-

rithm to optimize the potential describing the covalent interactions of the isolated CO2 molecule.

Due to its simplicity, six AL iterations with nbatch = 50 were enough and the prediction error

was about 1.0 meV/atom. The respective potential terms are kept fixed during the training of the

gas/metal FF. In contrast, the cohesive forces among the Ag atoms are optimized simultaneously

with the gas/metal interactions. We initialize the algorithm with both the isolated Ag7 cluster and

the Ag7CO2 hybrid. By generating and augmenting with data of the isolated cluster, and fixing the

covalent potential terms optimized for isolated CO2, we effectively "encourage" the model to learn

the energies of well separated systems (the gas being far away from the metal cluster) and, hence,
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the true energetic contributions (e.g. cohesive, gas physisorption) to the total energy.

Note, that in this framework, we label the DFT energy as the sum of all the interactions in each

system (see Section 2.6). Labeling the metal/gas interaction energy explicitly would demand, for

each new structure of the hybrid, computing the DFT energies of the deformed Ag7 cluster and CO2

molecule in an isolated environment. Although in some interfaces this deformation energy was

assumed to be negligible in the past,34 here, the undercoordinated clusters deform significantly.

Moreover, the problem could become intractable if more than one gas molecule were considered

in the system.

The total training, development and prediction MAEs of the derived models, trained on data

from both isolated Ag7 and Ag7CO2 structures, as a function of the AL iterations are shown in

Figure 2(a). During the first AL iteration the FF is trained on just one data point per system.

Due to that very initial small dataset, in the first iteration 20 new candidates (10 per system) are

generated by adding a small random Gaussian noise (∼ N(0,0.02) in Å) to the 2 initial structures.

Consequently, the prediction error seems small. Next, during the 2nd up to the 10th AL iterations,

new candidate structures are generated by MHMC, while for the consequent AL iterations (from

the 11th up to the last one), sMD is performed, as described in the Methods section 2.4. Initial

steps show very low training and development MAE; however, this is a result of overfitting to the

small initial dataset and the restricted exploration of the PES, giving rise to high prediction MAE.

Later, the training/development set error is approximately constant at about 30 meV, indicating

the model’s capacity. Switching to sMD at the 11th iteration results in a higher prediction error,

especially for the hybrid Ag7CO2 system, as shown in Figure 2(b). As the AL algorithm explores

new regions of the PES, it is likely to show increased prediction error, such as cases where the

molecule desorbs or reorients in a different way near the Ag cluster. This increase indicates that

sMD explores new regions of the PES more effectively.

Evidently, the selected structures, from the pool of candidates generated from sMD (after the

10th AL iteration), exhibit higher outlier scores (OS, defined in Eq. (24)) as depicted in Figure

3. This Figure depicts the mean, standard deviation, maximum, and minimum values of the OS
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for the selected batch at each AL iteration, defined respectively as OS, OSstd , OSmax, and OSmin,

for the sake of discussion. By definition, OS(d) > 1 denotes that, with respect to the specific

descriptor d, the candidate structure is outside of the distribution of d in the existing dataset, while

values close to one denote a structure that is dissimilar to the majority of the structures in the

existing dataset. In the first few (two-three) iterations, especially for Ag7CO2, the existing data

distributions for each descriptor element are quite narrow, resulting in elevated OS and OSmax. In

later iterations OS is near 0.4. Between the 4th and the 10th AL iteration, OSmax stays below 1,

while when using sMD, it takes values above 1 and the OS is higher, indicating exploration of new

PES regions. Towards the last AL iterations, the OS converges to a value of about 0.45 indicating

that the underlying descriptor distributions in the existing data are converging. Moreover, the

oscillations in OS seem to correlate well with the oscillations in the MAE prediction of Figure

2(b). In addition, the differences in OS between the isolated cluster systems and the gas hybrid

demonstrate the much more complex PES of the hybrid system. Despite that, after 21 iterations,

the AL seems to have explored well the PES, with prediction MAE below 6 meV/atom. This is a

significant result, considering that a superposition of flexible physics-aware models is used as the

functional basis set, that preserves pairwise additive computational efficiency (computational cost

scales with NlogN, using cell link lists, where N is the number of atoms).

Training the FF for such systems is also a challenging task. Finding the parameter set that

globally minimizes the cost function (13) is not a trivial task, especially for multi-parametric mod-

els with strong non-linear dependencies and interfacial PES.34 Here, we select the solution that

ensures the best trade-off between the energy cost (CE , eq. (13)) and the force cost (CF , eq. (14))

among the Pareto optimal solutions. Pareto optimal solutions are defined as the ones for which

there is no other solution that is better for both objectives. As described in the Methods section,

these are found by initially minimizing the CE without considering CF , and then minimizing CE

while constraining the CF at subsequently descending values. Here, indicatively, we choose to

show the set of calculated solutions during the 13th AL iteration in Figure 4. Not all solutions are

Pareto optimal, including the initial one, due to the various different parameter sets that locally
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Figure 2: (a) Training (train), development (dev) and prediction (pred) MAE (meV) of the derived
models, of the Ag7CO2 hybrid, as a function of the AL iterations. (b) Prediction MAE in energies
(meV/atom) for each system were the FF is actively trained simultaneously, as a function of AL
iteration. Indicative structures are depicted. At the 11th iteration sMD resulted in desorption of
the CO2 molecule, while in the 12th sMD drove the system in unexplored regions of the PES,
increasing the error.

minimize CE . Statistical differences between the training and the development set might also af-

fect this behavior. Preeminently, this training approach provides a way to evaluate different model

solutions and choose the solution among them exhibiting the best trade-off between CE and CF . In

the inset, we demonstrate the agreement of the "best" solution with DFT forces. The positive effect

of this methodology is even more pronounced in premature models in the early stages of AL, as

discussed in the SI Section S4 and shown in Figure S4. Finally, the model parameters as a function

of AL iteration is shown in Figure S5. Towards the last AL iterations, these exhibit convergence,

and therefore the model converges to a similar functional form.

3.2 General Applicability & Transferability

Besides the above demonstration case, we applied the algorithm in several additional systems; here

we present results obtained from three more gas/atomic cluster hybrids as summarized in Table 1.

The second system (Case 2) concerns a hybrid of Ag clusters with different sizes, compared to
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Figure 3: Mean outlier score, OS, for the selected batch at each AL iteration, per system. Thick
caps denote standard deviation, while thin caps denote the maximum and minimum values. In the
inset the data are shown in a linear plot.
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Figure 4: Set of calculated solutions (blue squares) on the normalized Force (CF ) and Energy
Cost (CE) for the development set during the 13th AL iteration. Note, that not all solutions are
Pareto optimal, including the initial solution (black star), where we do not include the forces in the
training. The solution that exhibits the best trade-off (red circle) of these two error metrics in the
development set is kept. In the inset, we show the classical model’s agreement with DFT forces.
Since CF and CE are normalized quantities they are dimensionless.
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the first one, and the CO gas. CO exhibits stronger physisorption interactions with Ag, compared

to the CO2. The hybrid in Case 3 involves SO2 and the planar atomic cluster Ag4. The planarity

of the cluster, the exchange of electrons between SO2 and Ag (chemisorption characteristics) and

the strong SO2/Ag interactions result in an even more complex PES of the hybrid. To fit well

the different energetic contributions, we optimize the FF simultaneously for all energy terms (gas

covalent, cluster cohesive, and hybrid chemisorption) and explore via the AL procedure the PES

for the Ag4SO2 hybrid and both the isolated Ag4 and SO2. Due to the PES roughness, we sampled

for a larger number of AL iterations. Case 4 involves Ag clusters of multiple sizes, while the FF is

common for all systems (Ag atoms are treated as the same type).

Figures S6–S8 present the predicted MAE and selected batch OS statistics as a function of AL

iterations for Cases 2–4, respectively. A similar convergence trend is observed across these cases,

with the OS correlating well with the predicted MAE. In Case 2, after 21 AL iterations, the model

achieves excellent accuracy, with an MAE below 10 meV/atom. In Case 3, the model successfully

captures the complex chemisorption interactions, with an MAE of approximately 30 meV/atom.

This level of error is acceptable given the model’s simplicity and computational efficiency. Case 4

demonstrates that a unified FF model for a range of cluster sizes (9–16 atoms) can be developed,

balancing accuracy and generalizability with an MAE between 10 and 35 meV/atom. All relevant

details on the derived models and their optimized parameters are provided in Tables S1–S4 for

Cases 1–4, respectively.

To assess the transferability across the cluster size, we use the FF optimized at the last AL itera-

tion of case 4 to generate a batch of 200 DFT labeled data of the Ag17 and Ag18 atomic clusters, that

were not included in the training set, following the steps of 1 AL iteration. The prediction MAE is

19.3 and 14.3 meV/atom, respectively, indicating that the FF is transferable for larger cluster sizes.

In addition, we use the AL algorithm to refine part of the FF, specifically for these two cluster sizes.

Without increasing the number of descriptors, we include a potential energy term, described via

a Bezier polynomial, that depends on the embedding density, up to embedding densities of value

6 (undercoordinated atoms). The part of the potential that was optimized in case 4 is kept fixed,
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while we fine-tune this new potential term. We run the algorithm 6 AL iterations and the results

are shown in Figure 5. The prediction MAE drops even below 10 meV/atom. This is a "trans-

fer learning" procedure and, although, here, we have not increased the complexity of the model,

for example using sophisticated many-body descriptors, such as the SOAP,15 we demonstrate that

such smooth potentials could learn most of the essential physics, improving transferability and

extrapolation of the model. The refined potential parameters are provided in Table S5.

Figure 5: Prediction MAE for Ag17 and Ag18 as a function of AL iteration. In the first iteration,
200 data points are generated and predicted via the FF optimized in case 4. Then, part of this FF is
fined tuned to the specific data. On each iteration 200 new data are generated.
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Table 1: Different applications of the AL algorithm. The prediction performance is averaged over
the last 5 AL iterations. It is shown in order respective to the naming order in the systems column.

Case Systems Characteristic Interactions Performance (meV/atom) AL iterations
Case 1 Ag7, Ag7CO2 Cohesive, Physisorption 5.3, 4.3 21
Case 2 Ag8, Ag8CO Cohesive, Physisorption 6.6, 6.7 21
Case 3 Ag4, Ag4SO2, SO2 Cohesive, Chemisorption 12.3, 22.7, 2.2 66
Case 4 Ag9, Ag10, Ag11, Ag12, Cohesive 17.5, 34.3, 23.2, 31.3, 21

Ag13, Ag14, Ag15, Ag16 27.0, 21.6, 11.1, 15.2

4 Conclusions

In this work, a batch Active Learning (AL) framework has been developed and successfully ap-

plied to complex gas and atom-sized metal cluster hybrids. The AL algorithm iteratively trains

and refines physics-aware FFs. On each AL step, the refined FF is used to generate a large pool of

candidate structures via stochastic methods, i.e., MHMC and sMD. The temperature is annealed

from 1 K to a high value, Ts (set to 500 K here), to smoothly capture potential desorption or reori-

entation of gas molecules around the rough atom-sized silver (Ag) clusters, thereby exploring the

PES. For each candidate structure, an OS is calculated that respects the permutational, rotational,

and translational invariance, as well as the permutational invariance of the descriptor vector. The

AL algorithm then selects a small batch from the candidates with a probability proportional to their

relative OS, efficiently augmenting with new regions of the PES since the selected structures un-

dergo Density Functional Theory (DFT) labeling, and augment the training dataset in the next AL

iteration. We should emphasize that here, we iteratively generate the training dataset, in contrast to

other AL approaches that strategically select data from a predefined labeled pool.32 This consists

of a great challenge, since a poor model could result in poor augmentation of the dataset.

The FFs’ basis set is composed of two-body and many-body terms (and covalent if necessary),

similar to semi-empirical potentials, while maintaining the computational efficiency of pairwise

additive interactions. The model relies on physically driven descriptors, each independently con-

tributing to the total potential energy and predicts well the interactions of complex gas/metal atomic

size hybrids. It can capture complex interactions with high accuracy, such as strong physisorption
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on rough surfaces and cohesive forces in undercoordinated atomic clusters (Ag7CO2, Ag8CO).

With an acceptable trade-off in accuracy, a FF describing complex chemisorption interactions for

the Ag4SO2 hybrid is also developed. Finally, with a similar trade-off in accuracy, a transferable

FF across the cluster size (Ag9−18) is produced.

In this work, we demonstrate that AL approaches can be effectively combined with low-

cost models, by generalizing the form of semi-empirical potentials and combining them with the

smooth, flexible, and controllable Bezier polynomials. Such models could be used either directly

for quantitative MD or as a starting point for further optimization on extended functional basis

sets, akin to the "transfer learning" procedure followed in Section 3.2. For example, it is highly

plausible that a small NN, which takes as input intuitive symmetry functions14 will effortlessly fit

the deviation of such physics-aware models, instead of trying to directly predict the PES. The logic

is similar to the work of Deringer et. al.,21 who showed that ML models can better extrapolate

when physics aware 2- and 3-body terms are used. However, we leave the examination of this

hypothesis for future work.

Supporting Information
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