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Abstract

Molecular property prediction has become essential in accelerating advance-
ments in drug discovery and materials science. Graph Neural Networks have
recently demonstrated remarkable success in molecular representation learning;
however, their broader adoption is impeded by two significant challenges: (1)
data scarcity and constrained model generalization due to the expensive and
time-consuming task of acquiring labeled data, and (2) inadequate initial node
and edge features that fail to incorporate comprehensive chemical domain knowl-
edge, notably orbital information. To address these limitations, we introduce a
Knowledge-Guided Graph (KGG) framework employing self-supervised learning to
pre-train models using orbital-level features in order to mitigate reliance on exten-
sive labeled datasets. In addition, we propose novel representations for atomic
hybridization and bond types that explicitly consider orbital engagement. Our
pre-training strategy is cost-efficient, utilizing approximately 250,000 molecules
from the ZINC15 dataset, in contrast to contemporary approaches that typi-
cally require between two and ten million molecules, consequently reducing the
risk of potential data contamination. Extensive evaluations on diverse down-
stream molecular property datasets demonstrate that our method significantly
outperforms state-of-the-art baselines. Complementary analyses, including t-SNE

visualizations and comparisons with traditional molecular fingerprints, further
validate the effectiveness and robustness of our proposed KGG approach.

Keywords: Drug discovery, graph neural networks, knowledge graph, self-supervised
learning, orbital information.

1 Introduction

Significant advancements in Artificial Intelligence (AI) have profoundly influenced
drug discovery sector, primarily through the implementation of machine learning and
deep learning techniques. These computational methods, renowned for their ability
to process and analyze large volumes of data with remarkable speed and precision,
have demonstrated significant potential to enhance efficiency and reduce costs across
various stages of the drug development pipeline, such as uncovering drug-target inter-
actions [1, 2], designing and optimizing drug structures [3–5], and predicting 3D
structures of proteins [6]. The identification of molecules with desired properties, in
particular bioactivity and toxicity, remains one of the major interests in the field of
Computer-Aided Drug Design (CADD) and Drug Development [7–9].

Molecular representations play a pivotal role in accurately predicting molecular
properties, serving as the foundation for computational models to capture the essential
structural and chemical features of molecules [10–12]. The choice of molecular repre-
sentation profoundly affects the performance of predictive algorithms, as a well-chosen
representation helps ensuring that the model can generalize across diverse chemi-
cal spaces while maintaining interpretability. Molecular descriptors [13–15], including
chemical and physical properties of compounds, and molecular fingerprints [16–18]
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that encode the structure and properties of molecules into binary vectors are frequently
used as input features in predictive models.

Graph-based deep learning has garnered significant attention within the artificial
intelligence community [19–22], driven primarily by the ubiquity of graph-structured
data across various domains, including e-commerce [23], transportation [24], and chem-
istry [25]. Chemical structures inherently adopt graph representations, making graph-
based models particularly promising for molecular representation learning [26, 27].
Despite their notable successes in supervised and semi-supervised learning scenarios,
these models heavily depend on manually labeled data, leading to several limitations:
(1) the acquisition and annotation of large-scale labeled datasets can be prohibitively
expensive, particularly in specialized fields such as chemistry and medicine [28], as
well as in fields where datasets are very extensive, such as in the study of social and
citation networks [29]; (2) supervised models frequently suffer from limited general-
ization and increased susceptibility to overfitting, particularly when labeled data is
scarce [30]; and (3) the accuracy and reliability of labels significantly affect model
performance, making these methods vulnerable to label noise and uncertainty [31].
These inherent challenges highlight the necessity for developing alternative method-
ologies capable of reducing dependency on labeled data while maintaining robust and
generalizable performance.

Despite the persistent scarity of labeled data, the abundance of large-scaled
unlabled dataset, particularly in chemistry [32], represents an invaluable resource,
contingent upon effective utilization. Self-Supervised Learning (SSL) emerges as a
promising paradigm in situations where extensive unlabeled data, but only limited
labeled data, exist. In practice, SSL models are pre-trained using sizable unlabeled
datasets through various pretext tasks, thereby capturing general representations of
the underlying data manifold. Subsequently, these pre-trained models undergo fine-
tuning using much smaller labeled datasets to optimize task-specific performance.
Recent investigations into SSL methodologies, for molecular representation learn-
ing [33–41], which are summarized in Supporting Section 2.2, have demonstrated
impressive performance and robustness across diverse benchmark datasets, detailed in
Tables S1 and S2. Notably, the Hierarchical Molecular Graph Self-Supervised Learning
(HiMol) framework introduced by Zang et al. [33], which leverages hierarchical graph
structures to facilitate integrated representation learning, and the Knowledge-guided
Pre-training of Graph Transformer (KPGT) model by Li et al. [41], which employs
line graph representations complemented by a central node aggregating and propagat-
ing chemical properties, have been identified as state-of-the-art approaches exhibiting
remarkable robustness and predictive power.

Although such significant advancements have been achieved in molecular represen-
tation learning, several critical challenges persist: (1) molecular graphs predominantly
encode atom-level information within nodes and edges but generally omit orbital
details, which are a crucial factor underlying chemical valence bonds, as well as other
chemical properties, thereby limiting representation expressivity; (2) one-hot encoding
strategies are computationally demanding for large-scale datasets [42] and insufficient
in capturing meaningful relations among categorical variables [43], such as bond types
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or orbital hybridization; (3) the excessive reliance on the pre-training datasets uti-
lized by SSL models may lead to data contamination [44]. Such contamination can
inadvertently incorporate test instances into the training process, thereby artificially
enhancing the measured generalization performance.

To address the aforementioned challenges, we introduce a novel graph-based SSL
framework, Knowledge-Guided Graph (KGG), which explicitly integrates orbital infor-
mation into molecular graphs. Our approach is inspired by the work of Benkö et
al. [45], which employed orbital graphs where hybridization-aware atomic orbitals are
represented as vertices and where the corresponding edges, interpreted as orbital over-
laps, depict localized chemical bonds responsible for chemical reactions. The proposed
KGG model consists of two essential components: (1) the Knowledge Representation
Graph (KRG) architecture, serving as an encoder to extract hierarchical graph rep-
resentations enriched with orbital-level chemical insights; and (2) the Knowledge
Self-Supervised Pre-training (KSSP) multi-task pretext module, designed for compre-
hensive pre-training. This module encompasses tasks ranging from adjacency matrix
reconstruction to the prediction of molecular attributes, notably orbital hybridization
and bond characteristics. Taken together, this enables KGG to address the above-
mentioned drawbacks of coventional molecular graph represenations. We furthermore
restrict our pre-training data to mitigate the risk of data contamination, as suggested
by Jiang et al. [44], thereby ensuring more robust capabilities across diverse datasets.

2 Results and Discussion

2.1 KGG Framework

The KGG model is an SSL framework designed to encode molecular representations by
utilizing knowledge vectors as initial features (Figure 1). Its architecture comprises
two primary components: the KSSP and the KRG. The KSSP operates as a pre-training
decoder driven by pretext tasks aimed at reconstructing orbital knowledge vectors,
adjacency matrices, and two fundamental molecular properties, using a Multi-Layer
Perceptron (MLP) that receives graph embeddings extracted by KRG. By jointly optimiz-
ing these tasks, the model effectively captures rich orbital and molecular information,
allowing the KRG encoder to learn meaningful representations that enhance the overall
predictive performance (Figure 1c). The KRG, built upon the Graph Isomorphism Net-
works (GIN) architecture [19], functions as a graph embedding extractor by processing
hierarchical graphs and incorporating orbital knowledge vectors as inputs to produce
graph embeddings (Figure 1d).

2.2 Molecular Property Predictions

Our KGG model demonstrated superior performance over thirteen state-of-the-art
(SOTA) SSL approaches, details of which are provided in Supporting Section 2.1
and 2.2 for classification and regression tasks on datasets from MoleculeNet, respec-
tively.

Regarding the classification tasks, our KGG model attained the highest average
ROC-AUC score (75.5 ± 0.3) across six datasets, as depicted in Figure 2a. Detailed
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Fig. 1 Overview of the KGG Framework. (a) The hierarchical molecular graph construction
involves three critical steps: (1) establishing an atom-level foundational graph, (2) decomposing this
graph into motif-level nodes, and (3) integrating a supernode that encapsulates the entire molecular
structure, thereby creating a comprehensive hierarchy with atom-, motif-, and graph-level represen-
tations [33]. (b) Initial feature embedding highlights the unique integration of orbital-level chemical
information. Atom features are derived based on hybridization and Valence Shell Electron Pair Repul-
sion (VSEPR) theory [46], while bond features distinctly represent relationships characterized by the
count of σ and π bonds, and existence of conjugation system (δ). Training procedure of KGG comprises
two stages: pre-training (c) with eleven pretext tasks in the KSSP module, followed by fine-tuning (d)
of the pre-trained KRG model for downstream evaluations on MoleculeNet benchmarks [47].

results, obtained from three independent experiments using distinct random seeds,
are presented in Table S1. We further validated the superior performance of KGG

through statistical testing, T-test in particular, which confirmed a statistically signifi-
cant improvement (p-value < 0.01) relative to the second-best method (see Figure 2d).
For a more comprehensive view of individual dataset performance and corresponding
statistical assessments, we refer to Figures S1 and S2, respectively. Specifically, KGG
delivered superior results on BACE and SIDER, with ROC-AUC scores of 86.3 ± 0.2
and 64.9 ± 1.0, respectively. On BACE, KGG significantly outperformed the second-
best model (HiMol, 84.3 ± 0.3) at a p-value < 0.001. Likewise, on SIDER, KGG (64.9 ±
1.0) significantly exceeded the second-best approach (MGSSL, 61.8 ± 0.8) with p-value
< 0.05. Although KGG ranked second on BBBP (72.5 ± 0.7) after HiMol (73.2 ± 0.8),
the difference did not reach statistical significance (p-value > 0.05). Overall, these
findings highlight the predictive capability of KGG compared to extant SSL methods,
underscoring the practical utility of orbital information in molecular representation
learning. Compared to the previously state-of-the-art HiMol [33], KGG achieved an
average ROC-AUC improvement of 2.4% and outperformed in four out of six datasets
(BACE, SIDER, ToxCast, ClinTox).

Among the spectrum of high-performing SSL methods, motif-based architectures,
including KGG, HiMol [33], G Motif [34], and MGSSL [36], have consistently exhibited
superior predictive ability. Indeed, five of the six top-performing models in our exper-
iments employ explicit motif representations, thereby emphasizing the pivotal role
of motif information in molecular representation learning. Motifs, conceived as func-
tional fragments encapsulating key chemical features, enable these models to detect

5

https://doi.org/10.26434/chemrxiv-2025-0c3rz ORCID: https://orcid.org/0000-0002-0952-1633 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-0c3rz
https://orcid.org/0000-0002-0952-1633
https://creativecommons.org/licenses/by/4.0/


and exploit domain-specific patterns inherent in molecular structures. Within this
elite subset of motif-based approaches, KGG surpassed its counterparts in four of the
six benchmark datasets, underscoring the utility of explicitly incorporating orbital
information into motif-based designs. Departing from previous SSL paradigms [33–
36, 40, 41, 48–54], KGG encodes molecular representations via a KRG “backbone,” which
merges motif structures with orbital knowledge vectors in the initial feature space for
both nodes and edges. These enhanced descriptors, incorporating hybridization states
and bond types (see Section 4.2), strengthen the model’s expressive power, ultimately
leading to more accurate molecular structure learning and property predictions.

Turning to regression tasks, Figures 2b, c illustrate the average root mean square
error (RMSE) and mean absolute error (MAE) achieved across six datasets in Molecu-
leNet. As recommended by MoleculeNet [47], MAE serves as the evaluation metric for
quantum-mechanical datasets (QM7, QM8, QM9), while RMSE is used for physico-
chemical datasets (ESOL, FreeSolv, Lipophilicity). Table S2 and Figure S3 provide
a detailed comparison between KGG and other SSL architectures on each respective
regression dataset. Notably, KGG delivered the best overall performance, achieving an
average RMSE of 0.78 ± 0.15 and an average MAE of 27.076 ± 43.86. While we do not
report T -test results here due to the limited number of datasets (three in each cate-
gory), KGG nevertheless outperformed its peers on ESOL, QM8, and QM9, achieving
scores of 0.731, 0.665, and 77.684, respectively (see Figure S3).

Compared to HiMol, which is the prior SOTA model, KGG reduced the average
RMSE by 39% and outperformed on two out of three individual RMSE benchmarks.
The average MAE was likewise reduced by 14%, with KGG again surpassing HiMol on
two of the three MAE datasets. Notably, KGG attained a 68% lower RMSE than HiMol

on FreeSolv and yielded a 15% reduction in MAE on QM7, a quantum-mechanical
dataset often considered among the most challenging (see Table S2). These findings
underscore the effectiveness of integrating orbital knowledge with motif-centric repre-
sentations, thereby enabling KGG to capture intricate chemical relationships and deliver
robust predictive performance.
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a b c

d e
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Fig. 2 (a) The average results of KGG and other SSL approaches on six classification datasets from
MoleculeNet is measured in terms of ROC-AUC (%). The results, presented as mean ± standard
deviation, were obtained through three independent runs, each utilizing a different random seed. (b)
The average RMSE values across three regression physicochemical datasets ESOL, FreeSolv, and
Lipophilicity of KGG model and previous SSL studies. (c) The average MAE values on three regression
quantum datasets QM7, QM8, QM9 of KGG model and other SSL methods. (d) The T-test analysis
compares the performance of KGG model against other SSL methods upon six classification datasets.
The T-test results indicate that the performance of our KGGmodel is statistically significant superior to
other SSL methods, with p value at three levels: 0.05, 0.01 and 0.001. (e) The Average Precision (AP)
and Matthews Correlation Coefficient (MCC) values on six classification datasets from MoleculeNet
of KGG model.

2.3 Comparisons with traditional fingerprints

We performed a comparative analysis to evaluate the representational capacity of
the KGG fingerprint, derived from the graph-level representations produced by the
KGG model, against three widely used conventional fingerprints: MACCS, ECFP4, and
RDK7. Our evaluation revealed two key findings: firstly, a kNN classifier, selected for its
simplicity, trained on KGG fingerprints, consistently achieves higher predictive accu-
racy compared to classifiers utilizing conventional fingerprints; secondly, t-distributed
stochastic neighbor embedding (t-SNE) visualization clearly demonstrates that KGG

fingerprints yield significantly improved clustering of data points, highlighting their
enhanced discriminative ability.

Specifically, KGG fingerprints outperform traditional fingerprints on the BACE and
BBBP datasets for classification tasks (Figure 3a) as well as on the ESOL, FreeSolv,
Lipophilicity, and QM7 datasets for regression tasks (Figure 3b). Importantly, these
improvements are consistently observed under both random and scaffold splitting
strategies, indicating that the observed superiorities are fundamentally attributable
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to our knowledge vectors, particularly the incorporation of orbital information. More-
over, the notable predictive performance achieved even with a simple algorithm such
as kNN suggests that KGG fingerprints inherently capture richer and more chemically
meaningful information than traditional fingerprints, independent of the complexity of
the predictive model. This inference is further substantiated by comparable predictive
results when employing either kNN or MLP classifiers on KGG fingerprints, as presented
in Figure S4.

Furthermore, we applied t-SNE visualization to directly compare KGG fingerprints
with conventional alternatives, as illustrated in Figure 3c. The visualization distinctly
demonstrates superior class separation in the BACE dataset when using KGG fin-
gerprints, as opposed to conventional fingerprints. A similar pattern is consistently
observed across other datasets, as further detailed in Figure S5, S6, S7, S8, S9. This
clear separation reaffirms the strong capability of our KGG model in generating effec-
tive graph neural network fingerprints for molecular representation, enabling various
downstream tasks.

a

b

c

.

Fig. 3 A comparison of classification and regression performance of KGG, MACCS, ECFP4, RDK7 fin-
gerprints using random and scaffold splitting strategies, as well as t-SNE visualizations. (a) The
ROC-AUC values for two classification datasets (BACE and BBBP). (b) RMSE and MAE values
for four regression datasets (ESOL, FreeSolv, Lipophilicity, QM7). (c) A t-SNE visualization of the
validation BACE test set for each fingerprint type.

2.4 Ablation Study

To assess the effectiveness of each component in our proposed KGG model, we per-
formed a series of ablation experiments. By selectively removing key modules from
the KGG architecture, we created several model variants, as detailed in Supporting
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Section 3.3, that highlight the contribution of each component [55]. The outcomes of
these experiments are summarized in Figure 4, Table S4, and Table S5.

a

b

.

Fig. 4 Ablation study of KGG variants. (a) ROC-AUC values for six classification datasets across
different KGG pre-training configurations, with the final three columns indicating their overall average.
(b) performance of six classification datasets under KGG variants that use different featurization
approaches, where the last five columns show the average ROC-AUC values for these variants.
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We performed a detailed investigation of the impact of the pre-training on the per-
formance of our KGG model, as depicted in Figure 4a. Specifically, we compared three
configurations: without pre-training (KGGwoPre), with partial pre-training excluding
orbital-oriented tasks (KGGHyBowoPre, retaining only reconstruction tasks for adja-
cency matrices, number of atoms, and number of bonds), and the fully pre-trained
KGG. Our results indicate that KGGwoPre consistently yields the lowest performance
across six classification datasets, underscoring the necessity of effective pre-training
for robust molecular representations. Meanwhile, KGGHyBowoPre improves significantly
over KGGwoPre, yet the complete KGG model demonstrates superior performance,
emphasizing the critical contribution of orbital-oriented tasks. Thus, integrating these
tasks in self-supervised learning enhances weight initialization and facilitates more
effective model adaptation.

To evaluate the influence of graph representations on downstream fine-tuning per-
formance, we systematically examined four variants of the KGG model (Figure 4b):
KGGonehot (utilizing only one-hot encodings), KGGwoHyBo (omitting both hybridiza-
tion and bond type vectors), KGGwoBondType (omitting bond type vectors), and
KGGwoHybri (omitting hybridization vectors). Our analyses underscore the pivotal role
of atomic hybridization, evidenced by KGGwoBondType’s consistent outperformance
over KGGwoHybri, thereby highlighting that hybridization provides more predictive
utility compared to bond type alone, which may introduce unnecessary noise. Notably,
the complete KGG model, incorporating both hybridization and bond type vectors,
demonstrated superior performance relative to both KGGwoBondType and KGGwoHybri.
This finding aligns chemically with the fundamental principle that molecular bond-
ing involves hybrid orbital overlaps, underscoring the synergy between hybridization
and bond type descriptors. Additionally, reliance exclusively on simplistic categorical
encodings (KGGonehot) resulted in suboptimal performance compared to other models,
highlighting their inadequacy in capturing nuanced chemical information. Ultimately,
our fully-integrated KGGmodel, combining comprehensive orbital-related features, con-
sistently delivered the strongest performance, validating the significant advantages of
embedding detailed chemical knowledge into molecular graph representations.

2.5 Data contamination

Data contamination has artificially boosted the performance of SSL models on down-
stream tasks [44]. This phenomenon arises because the model merely memorizes the
structures of test sets within the pre-training dataset, rather than exhibiting robust
generalization. Our KGG model outperformed other SSL methods while maintaining a
low rate of data contamination and utilizing a significantly smaller pre-training dataset
comprising 250,000 samples, in contrast to the 2 to 10 million data points employed
by others.

To investigate this issue, we selected the KPGT model [41], which has exhibited
superior performance across several MoleculeNet datasets, as a benchmark for assess-
ing the extent of contamination. Our findings, summarized in Table 1 and Figure 5,
reveal two principal observations: (1) KGG exhibits an exceptionally low contamination
rate (0.2%), contrasting sharply with the substantially higher rate observed in KPGT

(81.7%); (2) despite this significantly lower contamination, KGG achieves competitive
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performance on diverse tasks, including classification (e.g., BACE, SIDER, ClinTox;
see Figure 5b) and regression (e.g., ESOL, FreeSolv, Lipo; see Figure 5a). Notably,
even when KPGT contamination is relatively moderate, such as 37.8% in ClinTox or
19.7% in BACE, the KGG model consistently matches or surpasses KPGT’s performance.
This observation suggests that KPGT’s superior results on certain datasets may be influ-
enced by memorization of test-set structures during pre-training, undermining fair
comparative evaluation. Consequently, our results demonstrate that KGG maintains
robust generalization capability and competitive downstream performance, despite a
markedly lower level of dataset contamination.

Table 1 Data contamination comparison between KGG and KPGT models. (↓) denotes that a
smaller number is better.

Task type
Contaminated Data Points Test Data Points Cont. ratio (%) (↓)
KGG KPGT KGG KPGT KGG KPGT

Classification 6 1799 2289 2289 0.3 78.6
Regression 0 559 598 598 0 93.5
Overall 6 2358 2887 2887 0.2 81.7
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a

b

.

Fig. 5 An analysis of data contamination for KGG and KPGT is presented. (a) The RMSE perfor-
mance of the two models is assessed on three regression datasets, also including the corresponding
contamination ratios. (b) The ROC-AUC performance of both models is evaluated on six classifica-
tion datasets, with their respective contamination ratios reported alongside.

2.6 Limitations of Benchmarking Metrics

Binary classification constitutes a fundamental task of molecular property prediction
in general, and SSL in particular. Here, the area under the ROC curve (ROC-AUC)
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has conventionally been employed as the primary evaluation metric, recommended by
MoleculeNet [33–36, 40, 41, 48–54]. Despite its widespread adoption, ROC-AUC cap-
tures only sensitivity and false positive rate, neglecting positive and negative predictive
values. This can lead to misleadingly optimistic performance estimates, particularly
in the context of class-imbalanced datasets. Furthermore, an individual coordinate in
the ROC space does not uniquely specify a confusion matrix nor a set of matrices
with an equivalent MCC [56, 57], thus raising additional concerns about the reliabil-
ity of ROC-AUC for benchmarking SSL classification models. In contrast, the MCC
accounts for all four quadrants of the confusion matrix (i.e., sensitivity, specificity,
precision, and negative predictive value), thus requiring the classifier to excel across
multiple dimensions in order to achieve a high MCC score. Indeed, while a high MCC
value (e.g., 0.9) is invariably associated with a high ROC-AUC, the reverse does not
necessarily hold [58]. The discrepancy between these metrics is evident in Figure 2e,
where the MCC for KGG remains below 50% on certain datasets, whereas its ROC-
AUC values consistently surpass 60% (Figure 2a). For imbalanced binary classification
tasks, the average precision (AP) metric further complements MCC by jointly con-
sidering recall and precision [59]. Recognizing the inherent limitations of ROC-AUC
and the need for more robust performance measures, we benchmarked KGG using both
MCC and AP (Figure 2e). This approach represents the first instance of a SSL frame-
work advocating MCC and AP as primary metrics for molecular classification, thereby
offering a more comprehensive and reliable assessment of classification performance.
Although the adoption of new metrics can introduce reproducibility challenges in large-
scale benchmarking, we encourage future studies to consider MCC and AP alongside
ROC-AUC to ensure robust and meaningful evaluations. To facilitate future compar-
ative analyses, we present the MCC and AP performance of KGG in Table S3, thereby
encouraging broader adoption of more robust and informative evaluation metrics in
molecular classification tasks.

3 Conclusions

In this study, we propose an extended graph representation that explicitly incor-
porates orbital information, demonstrating superior performance over conventional
approaches across a range of chemical tasks within a SSL framework. By embedding
orbital characteristics into molecular graphs, our proposed methodology effectively
captures detailed structural and chemical nuances, thereby surpassing conventional
state-of-the-art SSL techniques relying solely on one-hot encodings. The principal con-
tributions of this research are: (1) introducing two chemically informed knowledge
vectors — hybridization states and bond types to enrich molecular representations;
(2) designing a novel pretext task focused on reconstructing the orbital information
encapsulated in these vectors; and (3) conducting a data contamination analysis to
evaluate the generalizability and robustness of the proposed model.

Despite the encouraging performance of KGG in molecular property prediction, cer-
tain limitations warrant further exploration. First, the framework currently lacks an
analysis of model uncertainty, which future studies should incorporate to quantify
prediction confidence more effectively. Second, while chemical knowledge was utilized
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to encode select features, critical descriptors such as atom types remain represented
via one-hot encoding, yielding high-dimensional feature spaces prone to overfitting.
Addressing this challenge, subsequent research should focus on systematically trans-
forming chemical domain knowledge (such as periodic groupings and periods, lone-pair
contributions in conjugated systems, electron dynamics, and electron density distribu-
tions) into graph-structured representations, thereby enhancing both interpretability
and predictive performance. Moreover, pre-training tasks are pivotal for the success
of downstream applications. Accordingly, the selection of samples in the pre-training
dataset must be designed not only to capture the intrinsic diversity of the data
but also to prevent the introduction of bias or contamination, which can undermine
generalization.

4 Methods

The overall framework of KGG is depicted in Figure 1 and comprises two distinct train-
ing stages: (1) pre-training with KSSP and (2) fine-tuning with KRG. Both stages follow
a similar processing pipeline: (1) construction of a hierarchical graph (see Section 4.1);
(2) integration of atom-level knowledge vectors (see Section 4.2); and (3) application
of a representation extractor to encode the hierarchical graph into a feature vec-
tor (see Section 4.3). The resulting representation is then employed during both the
pre-training and fine-tuning phases.

4.1 Hierarchical graph

4.1.1 Hierarchical structure

Given a SMILES string, a molecular graph G = (V,E) is constructed using RDKit [60].
The vertex set V is defined as: V = {v1, v2, . . . , vn}, where n is the number of atoms
in the molecule. The edge set E is given by pair of atoms (vi, vj) such that vi and vj
connected by a chemical bond.

Subsequently, KGG identifies chemically meaningful substructures (motifs) as sub-
graphs M ′

i = (V ′
i , E

′
i) of G. The motif decomposition makes use of BRICS, a system

of drug-like chemical fragments [61], and an additional rule from HiMol [33]. The
decomposition will select a vertex set of G that matches the BRICS and HiMol rules.
Complete details on the motif decomposition procedure are provided in Supporting
Section 3.1 and Algorithm S1. Each motifMi is associated with a motif node vMi

∈ Vm.
Motif-atom edges Em link motif nodes vMi

to their constituent atom nodes vj , i.e., we
introduce the edge (vMi

, vj) whenever vj ∈ V (Mi) where V (Mi) is the set of atoms
forming the motif subgraph Mi.

To incorporate global structural information, a graph-level node or supernode vg ∈
Vg is introduced. Thus, the augmented hierarchical graph G̃ consists of three layers

(atom-level, motif-level, graph-level) and is formally represented as: G̃ = (Ṽ , Ẽ) with
Ṽ = V ∪ Vm ∪ Vg and Ẽ = E ∪ Em ∪ Eg. The edges Eg connect the supernode to all
motif nodes. Figure 6a illustrates the hierarchical graph construction process.
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4.1.2 Hierarchical encoding

Let V , Vm, and Vg denote the sets of atoms, motifs, and the supernode, respectively.
The full representation H0 of the hierarchical graph is defined as the concatenation of
the atom-level, motif-level, and graph-level feature representations: H0 = H∥Hm∥Hg,
where ∥ denotes the vertical concatenation of matrices and vectors. The individual
feature representations, using a d-dimensional embedding space, are defined as follows:

H = {hv | v ∈ V } ⊆ R|V |×d is the atom-level feature matrix, where each atom fea-
ture vector hv encodes atom-type and bond-type information, such as atomic number,
hybridization state, and bond orders.
Hm =

{
hM
Mi

∣∣ Mi ∈ Vm

}
⊆ R|Vm|×d is the motif-level feature matrix. Here, each motif

feature vector hM
Mi

captures the structural and chemical properties of the motif Mi.

Hg = hg ∈ Rd is the graph-level feature vector hg, which aggregates global informa-

tion from all motifs in G̃.

a. Hierarchical Graph Construction

𝑉𝑔

𝐸𝑔

𝑉𝑚

𝐸𝑚

𝑉

𝐸
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෨𝐺 = ෨𝑉, ෨𝐸
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෨𝐸 = 𝐸, 𝐸𝑚 , 𝐸𝑔

𝐺 = 𝑉, 𝐸

Motif decomposition

a. BRICS Decomposition b. Additional Decomposition c. Motif

b. Knowledge vectors

𝐴𝐴
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𝑋/𝐸

𝑋/𝐸

𝑋/𝐸

𝑋/𝐸

𝑋/𝐸

𝑋/𝐸

𝑋/𝐸
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𝐴
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𝑋/𝐸
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𝑋/𝐸
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Example

C𝐻4𝐸0with sp3 hybridization

1 3 0 4 0

BOND TYPE VECTOR

Example

Single bond

1 0.0 0

.

Fig. 6 Molecular Representation using KGG. (a) illustrates the three distinct levels of encoding. (b)
demonstrates the knowledge vector concept applied to atoms and bonds.
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4.2 Knowledge vectors

4.2.1 Node Representation

The input features of atoms are atomic number, degree, and hybridization, as described
in Supporting Section 3.2.1. However, conventional one-hot encodings often over-
look the inherent relationships among distinct hybridization states. In response, a
knowledge vector-based encoding scheme can enrich molecular representations by
incorporating both hybrid orbital compositions and features from VSEPR theory [46],
summarized in Figure 6b.

Let H denote the set of possible hybridization states for a given atom:

H = {UNSPECIFIED, s, sp, sp2, sp3, sp3d, sp3d2}.

We define the hybridization function as ϕhybrid : H → N3 that maps each state to
(ns, np, nd), where ns, np, and nd denote the numbers of s, p, and d orbitals.

VSEPR theory correlates molecular shape with the arrangement of electron pairs
around a central atom. The VSEPR descriptors, denoted AXxEy, can be formally
defined by the VSEPR function: ϕVSEPR : V → N2, that maps a molecular geometry
to (x, y), where x is the number of bonded atoms X to the central atom A, and y is
the number of lone pairs E on A.

To integrate hybridization with VSEPR descriptors into a single structural rep-
resentation, we define the composite function: ϕcomp : H × V → N5, where
ϕcomp(state, geometry) =

(
ns, np, nd, x, y

)
. and (ns, np, nd) = ϕhybrid(state) and

(x, y) = ϕVSEPR(geometry).
As an example, consider the the carbon atom in methane CH4E0, illustrated in

Figure 6b. Using our scheme, we represent this as: ϕcomp(C) = (1, 3, 0, 4, 0). Here,
1 corresponds to the s orbital, 3 to the p orbitals, 0 to any d orbitals, 4 indicates the
total number of sp3 orbitals, and 0 indicates no lone pairs on carbon.

4.2.2 Edges Representation

The initial bond features comprise the bond type, ring state, and a knowledge vec-
tor that encodes distinct orbital contributions (see Supporting Section 3.2.2). This
knowledge vector arises from quantum mechanical orbital interactions and is given by

e⃗ij =

σij

πij

δij

 ,

where σij , πij , and δij represent the sigma, pi, and conjugation contributions, respec-
tively, each determined by the relevant orbital overlap integrals. Figure 6b provides
a visual representation of these bond contributions. For example, the single bond in
ethane, Figure 6b (ethane), is represented as e⃗ij = (1, 0.0, 0)⊤ where 1 denotes the
single σ-bond contribution, 0.0 indicates no π-bond component, and 0 denotes the
absence of any conjugated state.

16

https://doi.org/10.26434/chemrxiv-2025-0c3rz ORCID: https://orcid.org/0000-0002-0952-1633 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-0c3rz
https://orcid.org/0000-0002-0952-1633
https://creativecommons.org/licenses/by/4.0/


4.3 Molecular representation extractor

The objective of this stage is to encode the molecular graph features of an individual
molecule into a one-dimensional vector for training purposes.

Specifically, consider the hierarchical graph G̃ = (Ṽ , Ẽ), where the node set is
defined as Ṽ = V ∪ Vm ∪ Vg and the edge set as Ẽ = E ∪Em ∪Eg. The initial feature

associated with a node vi ∈ Ṽ is given by

Xvi ∈ Rdv ,

while the feature corresponding to an edge evivj ∈ Ẽ is denoted by

Xvivj ∈ Rde .

Here, Xvi
is a 7-dimensional feature vector assigned to node vi, and Xvivj is a 5-

dimensional feature vector characterizing the connection between nodes vi and vj .
These feature vectors are then transformed by a MLP prior to their use in the

GINConv layer, as expressed in

h0
vi =

dv∑
k=1

MLPk

(
xk
vi

)
,

h0
vivj =

de∑
k=1

MLPi

(
xk
vivj

)
,

where xi
v ∈ R is the k-th scalar component of the node feature vector Xvi , and

xi
vivj ∈ R is the k-th scalar component of the edge feature vector Xvivj . Here, h0

vi and

h0
vivj denote the input feature embeddings for node vi and edge vivj , respectively.

Next, h0
vi

and h0
vivj are passed through a GINConv layer, defined by Equation (1):

h(l)
vi = MLP (l)

(
h(l−1)
vi +

∑
vj∈N(vi)

(
h(l−1)
vj

+ h0
vivj

))
, (1)

where MLP(l) = {Linear(d, 2d) → ReLU → Linear(2d, d)}, h(l−1)
vi and h

(l−1)
vj are the

embedding vectors of atoms vi and vj at layer l−1. h
(l)
vi denotes the embedding vector

of atom vi at layer l. N(v) denote the set of neighboring nodes of vi in the graph. In
general, Equation (1) can be rewritten as:

h(l)
vi = GINConv

(
h(l−1)
vi , h0

vivj

)
,

The KRG encoding model comprises five GINConv layers (Figure 7), interspersed with
BatchNorm and Dropout layers. The feature update process for node vi from the first
to the fourth GINConv layer is given by

h(l)
vi

= Dropout(l)
(
ELU

(
BatchNorm(l)

(
GINConv(l)(h(l−1)

vi , h0
vivj )

)))
,
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while, in the final fifth GINConv layer, the ELU activation function is omitted:

h(5)
vi = Dropout(5)

(
BatchNorm(5)

(
GINConv(5)(h(4)

vi , h
0
vivj )

))
Inspired by the success of Graphormer [62] and Himol [33], a READOUT function is not
employed to obtain the global graph representations. Instead, we adopt the supernode

embedding h
(5)
vg (indicated in orange in Figure 7) as the representation of the entire

graph. This embedding is subsequently used for both pretext and downstream tasks.
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Fig. 7 An overview of the KRG encoder, which consists of five GINConv layers.

4.4 Pretrained model

The pre-training KSSP model is derived from eleven pretext tasks (Figure 8) and the
configurations for this stage is detailed in Supporting Section 3.4.1. Eight of these
tasks focus on reconstructing two knowledge vectors, one addresses the reconstruction
of adjacency matrices, and two target the prediction of graph-level properties. A key
aspect of this pre-training scheme lies in reconstructing orbital information embedded
in two knowledge vectors (hybridization and bond types), which play a pivotal role in
defining chemical semantics yet have been overlooked in prior studies [33–36, 40, 41,
48–54].

Reconstruction of hybridization vector: We utilize atomic-level embeddings
(hvi) and employ Cross Entropy Loss (CELoss) to reconstruct five elements of
ϕcomp(state, geometry) =

(
ns, np, nd, x, y

)
as follows:

hvi → ϕns {Linear(d, d)→ReLU→Linear(d, 2)} → ŷs

hvi → ϕnp {Linear(d, d)→ReLU→Linear(d, 3)} → ŷp

hvi → ϕnd
{Linear(d, d)→ReLU→Linear(d, 4)} → ŷd

hvi → ϕx {Linear(d, d)→ReLU→Linear(d, 7)} → ŷx

hvi → ϕy {Linear(d, d)→ReLU→Linear(d, 7)} → ŷy
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The hybridization loss is defined as the aggregate of five individual loss components,
as detailed in Equation 2:

Lhybridization = LCELoss
ns

+ LCELoss
np

+ LCELoss
nd

+ LCELoss
x + LCELoss

y (2)

Reconstruction of bond type vector: Bond formation arises from axial (σ) and
lateral (π) orbital overlaps, which determine properties such as bond strength and
length. Consequently, predicting these overlaps enables the model to capture essential
chemical information. The three bond-type tasks are defined as follows:

concat[hvi , hvj ] → ϕσ {Linear(2d, d)→ReLU→Linear(d, 1)} → ŷσ

concat[hvi , hvj ] → ϕπ {Linear(2d, d)→ReLU→Linear(d, 1)} → ŷπ

concat[hvi , hvj ] → ϕconjugation {Linear(2d, d)→ReLU→Linear(d, 1)} → ŷconjugation

Here, hvi and hvj are the atomic-level embeddings of the two atoms vi and vj forming
a covalent bond. The total bond type loss is the sum of three individual losses:

Lbond type = LBCE
σ + LSmoothL1

π + LBCE
conjugation

Adjacency Matrix Reconstruction: This task is defined by

concat[hvi , hvj ] → ϕadj {Linear(2d, d)→ReLU→Linear(d, 1)} → ŷvivj

where yvivj ∈ {0, 1} indicates whether a bond exists between atoms vi and vj . The
loss for adjacency matrix reconstruction is

Ladj = −
∑

vi,vj∈V

(
yvivj log ŷvivj + (1− yvivj ) log(1− ŷvivj )

)

Graph-Level Prediction Tasks: We utilize the graph-level embedding (hg) to
predict the number of atoms and the number of bonds. These tasks are expressed as:

hg → ϕatoms {Linear(d, d
4 )→Softplus→Linear(d4 , 1)} → ŷatoms

hg → ϕbonds {Linear(d, d
4 )→Softplus→Linear(d4 , 1)} → ŷbonds

Here, ŷatoms and ŷbonds are the predicted values for the number of atoms and bonds,
respectively. The SmoothL1Loss is less sensitive to outliers compared to MSE [63]
and, according to Girshick [64] can help prevent gradient explosions. Based on
SmoothL1Loss, the losses are formulated as:

Latoms =


1
2

∥∥ yatoms − ŷatoms

∥∥2
2
, if

∥∥ yatoms − ŷatoms

∥∥
1
< 1∥∥ yatoms − ŷatoms

∥∥
1
− 1

2 , otherwise
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Lbonds =


1
2

∥∥ ybonds − ŷbonds
∥∥2
2
, if

∥∥ ybonds − ŷbonds
∥∥
1
< 1∥∥ ybonds − ŷbonds

∥∥
1
− 1

2 , otherwise

Objective Loss Function: Finally, the total loss for backpropagation is the sum of
all five principal losses, as represented in Equation 3:

L = Lhybridization + Lbond type + Ladj + Latoms + Lbonds. (3)
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Fig. 8 An architecture of the KSSP decoder.

4.5 Datasets and Baselines

For the pre-training stage, approximately 250,000 molecules were randomly sampled
from the ZINC15 dataset [65]. The model was fine-tuned using twelve molecular prop-
erty datasets from MoleculeNet [47], comprising six classification and six regression
tasks. Further details on both the pre-training and fine-tuning datasets are provided
in the Supporting Section 2.1, and summarized in Table S6. Following established
studies [33–36, 40, 41, 48–54], we adopted a scaffold splitting strategy to divide each
dataset into training, validation, and test subsets at an 8:1:1 ratio, thereby ensuring
structural differences between training and test molecules and assessing model general-
izability. Subsequently, we benchmarked the KGG model against a set of state-of-the-art
self-supervised learning baselines. Further details regarding these benchmark methods
are available in the Supporting Section 2.2.
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4.6 Experimental Settings

Training configurations
The research was conducted on a Linux System 22.04 LTS, powered by an Intel®

Core� i7-13700K processor featuring 16 processing units and 24 CPUs operating at
3.10GHz. The system includes 512GB of memory and 96GB of DDR4 RAM, with
graphics capabilities provided by a GTX 4070Ti Super card containing 16GB of
VRAM.

During both pre-training and fine-tuning phases, the Adam optimizer was uti-
lized, along with a batch size of 32 and embedding dimensionality of 512. Fine-tuning
was repeated three times per dataset with distinct random seeds. Further training
configuration details can be found in Supporting Section 3.4.
Comparisions with traditional fingerprints

To comprehensively assess the molecular representation capabilities of the KGG

neural graph fingerprints—specifically, global representations extracted from the fine-
tuned KRG layers of the KGG model—were generated for two classification datasets
(BACE and BBBP) and four regression datasets (ESOL, FreeSolv, Lipophilicity, and
QM7). Subsequently, these embeddings were evaluated using a kNN classifier with
n neighbors = 3 to quantify classification performance through the ROC-AUC metric,
as well as to measure predictive accuracy on regression tasks using RMSE and MAE.
For comparative purposes, identical analyses were performed with three established
molecular fingerprints: MACCS [66], ECFP4 [67], and RDK7 [68]. Dataset partitioning was
conducted according to the strategy described in Section 4.5. Additionally, the dis-
criminative power of the KGG fingerprints was further illustrated through visualization
of the embeddings using the t-SNE [69] algorithm, clearly demonstrating their capac-
ity to effectively distinguish molecular structures within a two-dimensional embedding
space.
Data contamination

The methodology comprises two principal steps: (1) extracting every compound
from the test sets of each fine-tuning dataset, and (2) evaluating the extent of overlap
between these compounds and those in the pre-training dataset on the basis of normal-
ized canonical SMILES structures. This normalization and comparison are conducted
using the RDKit library to ensure consistency and accuracy in detecting potential data
contamination.

Data Availability

All code and the pre-trained KGG model are publicly available at https://github.com/
ThinhUMP/KGGraph. The ZINC dataset employed for pre-training is downloadable
from https://github.com/ZangXuan/HiMol, as outlined in Himol [33]. Furthermore,
the downstream datasets used for fine-tuning can be obtained through the Molecu-
leNet repository at https://github.com/deepchem/deepchem/tree/master/deepchem/
molnet/load function.
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