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ABSTRACT

We present RetroSynFormer, a novel approach to multi-step retrosynthesis planning. Here, we ex-
press the task of iteratively breaking down a compound into building blocks as a sequence-modeling
problem and train a model based on the Decision Transformer. The synthesis routes are generated by
iteratively predicting chemical reactions from a set of predefined rules that encode known transforma-
tions, and routes are scored during construction using a novel reward function. RetroSynFormer was
trained on routes extracted from the PaRoutes dataset of patented experimental routes. On targets
from the PaRoutes test set, the RetroSynFormer could find routes to commercial starting materials
for 92% of the targets, and we show that the produced routes on average are close to the reference
patented route and of good quality. Furthermore, we explore alternative model implementations and
discuss the robustness of the model with respect to beam width, reward function, and template space
size. We also compare RetroSynFormer to AiZynthFinder, a conventional retrosynthesis algorithm,
and find that our novel model is competitive and complementary to established methodology, thus
forming a valuable addition to the field of computer-aided synthesis planning.

Keywords Artificial intelligence · Retrosynthesis · Deep learning · Drug discovery

1 Introduction

Organic chemical synthesis is fundamental to molecular design and discovery, yet designing efficient synthetic routes
remains a significant challenge and is often a bottleneck (1). Retrosynthesis, an approach that dates back to the 1960s
(2; 3), addresses this by systematically deconstructing target compounds into readily available starting materials. Recent
advances in artificial intelligence (AI) and deep learning (DL) have greatly contributed the fields of retrosynthesis
prediction and computer-aided synthesis planning (4; 5; 6; 7), leveraging expanding reaction datasets (8; 4). However,
there are outstanding challenges, especially for efficient search algorithms in multi-step retrosynthesis planning.
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In this work, we introduce the RetroSynFormer, a novel approach to multi-step retrosynthesis prediction guided by a
Decision Transformer (DT) (9). By framing retrosynthesis as a sequence modeling problem, RetroSynFormer predicts
reaction steps autoregressively, conditioning each decision on previous steps to capture reaction patterns across datasets.
Unlike conventional search-based methods, RetroSynFormer inherently learns context-dependent synthesis strategies,
enabling the model to utilize the full history of the path it has taken to synthesize a compound at each step and thereby
potentially improving route prediction.

We summarize the three main contributions of our work as follows:

• this is the first example of the DT being used for retrosynthesis planning problems, where we recast retrosyn-
thesis optimization as a sequence modeling task;

• this is one of the first demonstration of true multi-step retrosynthesis planning using DL models, as opposed to
prior work which has focused on the sequential application of single-step models;

• we thoroughly benchmark our model using meaningful metrics, such as the success rate and top-1 accuracy,
providing a detailed comparison to the current SOTA: AiZynthFinder.

2 Background

2.1 Retrosynthesis Prediction

Organic synthesis plays a central role in nearly all chemical industries, from drug discovery to material discovery
(1). The aims of organic synthesis are to efficiently manufacture organic compounds through series of chemical
reactions; this is a complex problem as each compound can be assembled in multiple ways, creating a huge chemical
space and making for a challenging search problem. The synthesis of chemical compounds therefore represents
a critical bottleneck in molecular design, a challenge which motivated the conceptualization of retrosynthesis by
E.J. Corey in 1967 (3) following earlier developments (2). Retrosynthesis refers to the idea of iteratively breaking
down a target compound until all building blocks are readily available starting materials. Since then, emergence of
computational technologies and resources has enabled computer-assisted synthesis planning for more productive and
efficient retrosynthesis prediction. In recent years, research on retrosynthesis has been further expedited due to the
recent developments of AI and DL (4; 5; 6; 7), and the emergence of larger collections of reaction data on which the
AI-driven retrosynthesis can be trained (8; 4). This development has enabled chemists to save valuable time and effort
when designing synthetic experiments which can lead to finding the right compounds faster (10).

Retrosynthesis prediction is typically separated into two tasks, single-step retrosynthesis prediction and multi-step
retrosynthesis planning. In single-step retrosynthesis, the task is to decompose a compound to one or more precursor
molecules, or reactants. Multi-step retrosynthesis aims to find a sequence of reactions—a synthesis route—which
describes how to make a chemical compound from a set of readily available starting materials. The task is typically
approached by iteratively using a single-step model to break down a compound into precursors until all starting materials
belong to a set of available building blocks. Single-step models have been extensively researched, and we refer to a
recent review for an overview (11). Conversely, multi-step retrosynthesis typically employs a single-step model with
a search algorithm such as Monte Carlo tree search (MCTS) (12) (13) or A* search (14; 15); reinforcement learning
(RL) has also been proposed for this task (16). However, methods such as MCTS typically only consider the current
state (i.e., a single molecule) when making the predictions for the next reaction. Some work has proposed including
additional context into models, such as the parent reactions, when making the predictions (17). We hypothesize here
that including additional route context in the predictions would be beneficial to retrosynthesis modeling, and that this
could result in a model which can learn common patterns or combinations of reactions across the entire route dataset.

2.2 Language Models in Synthesis Planning

In recent years, a variety of transformer models have been widely adopted for various different tasks including machine
translation, natural language processing and computer vision. Nonetheless, these models have also gained widespread
use in computer-aided synthesis planning. One such example is the Chemformer, a molecular transformer model that
has been trained for multiple tasks, including retrosynthesis planning, forward synthesis, and property prediction (18).
The Chemformer model has also been integrated with AiZynthFinder for multi-step retrosynthesis planning (6). One
other application that uses large language models for multi-step retrosynthesis prediction is DirectMultiStep, which
predicts routes as single strings and thus bypasses the need for single-step methods (19). Although an interesting
approach, predicting a route as a single string presents a unique set of challenges which are difficult to overcome, such
as the inability to condition routes on available starting material and the generation of invalid routes.
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2.3 Decision Transformer

Here we present the RetroSynFormer, a novel approach to multi-step retrosynthesis prediction where the search is
guided by a DT model (9). The DT framework, originally proposed for RL tasks, reformulates decision-making as a
sequence modeling problem, leveraging the success of transformers in natural language processing. Instead of learning
a traditional value function or policy, a DT models trajectories of states, actions, and rewards as sequences, predicting
future actions autoregressively based on past context. This formulation makes DT particularly well-suited for offline
RL settings, where a fixed dataset of trajectories is available, and direct interaction with the environment is costly or
impractical.

In retrosynthesis prediction, running additional experiments to test new chemical reactions and explore the search space
is often infeasible on a short time-scale, making offline learning essential. By using a DT, our approach conditions
action predictions (i.e., reaction templates) on previous states and actions in a retrosynthetic route, allowing it to
capture common reaction patterns and dependencies observed in historical data. This enables the RetroSynFormer to
effectively generalize across diverse reaction pathways without requiring explicit exploration through new experiments.
Starting from a target molecule, the model autoregressively predicts the next reaction step until reaching a stopping
criterion, constructing complete retrosynthetic routes in a flexible and data-driven manner. Unlike other sequence-based
RL approaches such as the Searchformer(20), which integrates A*-like search with a transformer-based policy, our
approach directly models retrosynthetic trajectories without heuristic guidance, making it more flexible for data-driven
generalization. As the DT leverages the full trajectory information, making it well-suited for retrosynthesis planning
scenarios where long-horizon dependencies are critical, we believe it offers advantages to policy-gradient approaches
that may require reward shaping or explicit policy optimization (21).

3 Methodology

RetroSynFormer is a DT model to predict the next reaction (action) in a synthesis route. During inference the model uses
a retrosynthesis environment to generate the next reactant molecule(s) (state) and a reward for each action, iteratively
generating the retrosynthesis route until one of the stopping criteria is met (Figure 1).

Figure 1: Overview of the RetroSynFormer method. The DT, based on a GPT-2 architecture, predicts an action (reaction
template) which is passed to the Retrosynthesis Environment to return the new state along with the corresponding
reward. The environment keeps track of the context, such as available building blocks, reaction templates, and maximum
depth allowed, as well as the current route, its status, and stop criteria for when to end the predictions.

3.1 Data

RetroSynFormer is trained on a subset of routes from the PaRoutes dataset (4) where the routes have been derived from
the reactions in the USPTO dataset provided by Lowe (22). The PaRoutes dataset includes 457,166 routes as JSON data
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objects with nested dictionaries, where the molecules are represented as SMILES and the reactions are atom-mapped
reaction SMILES with an associated reaction template extracted via RDChiral (23; 24). The full PaRoutes dataset
includes a total of 42,551 reaction templates and routes for 175,164 unique targets.

Here, we formulate the retrosynthesis task as a classification task and at each step we aim to predict the correct action,
i.e., a reaction template. By reducing the number of possible templates, the complexity of the task can be reduced.
Therefore, we sorted the templates based on the frequency in the routes and extracted routes with only the most
frequently occurring templates. We have created three datasets: small, standard and large, each based on different
frequency-cut-offs for the included templates. For the standard dataset, all routes with only the 3,000 most commonly
used templates were taken, giving in total 247,531 (54%) routes, and for the small and large dataset we instead extracted
the 1,000 and 6,000 most common templates, respectively (for detailed numbers, see Table 1). To further reduce the
number of templates, we followed the procedure of Heid et al. (25) to identify templates that are subgraphs of other
templates, which corresponds to the final size of the action space. For the standard dataset this give 1,572 templates.
The process of creating the dataset is illustrated in Figure 2a.

The standard dataset is used in all experiments while the small and large datasets are only used for the results in Section
4.6. Note that the standard dataset is a subset of the large and that the small dataset is a subset of the standard dataset,
as illustrated in Figure 2b.

Synthesis routes are naturally tree-like data structures. In order to easily process them using the DT, we need to convert
the tree-like routes into sequences of states, actions, and rewards, illustrated in Figure 3. Where the molecules are
the states, the reaction template is the action and for each step, a reward is calculated. When a reaction decomposes
a molecular state into more than one intermediate reactant, a branch is formed in the route. To standardize the way
branching points are handled in the data, reactant SMILES are sorted according to length and the molecule with the
longest SMILES is expanded first, while the other molecule is added to a stack. In this way, we follow a depth-first
order when transforming the route into a sequence: only after a given branch is completely rolled out (all leaves are
building blocks) do we continue with the next branch.

Finally, the set of available starting materials, i.e., building blocks, is defined by the set of all leaf molecules from the
extracted routes. Details can be found in Table 1.

3.2 Data Splitting

The same data splitting is followed three times for each of the large, standard, and small datasets. These datasets enable
us to study the effect of training set size on model performance; details for each dataset can be found in Table 1.

Table 1: Number of unique targets and reactions in the training, validation, and test sets for the three main datasets
curated in this work. All datasets were created from PaRoutes (4) data.

Dataset Small Standard Large

Templates 588 1,572 2,986
Building blocks 38,521 58,251 72,737

Train set 44,736 67,180 86,048
Valid set 5,362 8,222 10,645
N1 Test set 2,168 4,320 5,631
N5 Test set 1,732 3,569 5,260

Total # unique targets 53,626 82,222 106,452
Total # routes 144,812 326,294 442,844

We split the data by the target compounds rather than by the routes and in this way ensure that there is no overlap
between the targets in the hold-out test set and the training and validation sets. First, we created a hold-out test set
from the N1 and N5 targets of the PaRoutes dataset (4), and because we subsample the templates, we also needed to
subsample the N1 and N5 sets (see Figure 2c). For the standard dataset the number of targets are 4,320 and 3,569 for
N1 and N5, respectively. Here, the N1 set consists of relatively simple, predominantly linear synthetic routes, reflecting
the broader distribution of extracted routes. The N5 set also contains routes, generally longer and more complex, and
was designed to be a more challenging benchmark for retrosynthesis prediction.

After removing the N1 and N5 targets and their corresponding routes, we randomly selected 10% (8,222 for the standard
dataset) of the total number of unique target compounds from the remaining target compounds to create the validation
set. Finally, the rest of the target compounds formed the training set (67,180 target compounds for the standard dataset).
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Figure 2: Overview of key data processing steps. a) First, we filter routes from PaRoutes to keep only those using the
3,000 most common templates. After filtering, the reaction templates are further reduced by identifying overlapping
templates to give “corrected” templates.(25) b) Illustration of the relationship between PaRoutes and the three datasets,
large, standard, and small, showing how the large dataset is a subset of the PaRoutes dataset, the standard dataset is a
subset of the large dataset, and the small dataset is a subset of the standard dataset. c) Illustration showing how the N1
and N5 sets relate to the three datasets in b); as in b) the N1 and N5 sets in the smaller datasets are subsets of the larger
ones.

3.3 Decision Transformer

The RetroSynFormer architecture leverages the DT to autoregressively predict the next chemical reaction given all
previous reactions, molecules, and rewards. Here, we used the GPT-2 DT model implemented in the Transformers
repository (26).

The input to the DT model consists of three vectors: actions, A = [a0, . . . , at], states, S = [s0, . . . , st], and rewards,
R = [r0, . . . , rt]. Each element in A is a one-hot vector encoding a reaction template where ai ∈ {0, 1}1,572 for the
standard dataset. Each template determines the chemical transformation to apply to the target molecule. Each element
in S represents the target molecule(s), so that si+1 = ai(si); here, si ∈ Rd where d is the length of the molecular
fingerprint used. Finally, each element in R is a reward such that ri = f(si) ∈ R, providing an estimate of the quality
of the route at the current time-step, i. The total number of time-steps is denoted by t in a reaction sequence. We
used Optuna for hyperparameter optimization to determine the model parameters; details and optimal parameters are
provided in Table S7 in the Supplementary Information (SI).

All the presented models have been trained on only one route per target, where, for each target, the route was randomly
selected from all available routes.

3.3.1 Actions

The reaction templates used here are the “corrected” templates following Heid et al. (25). The number of available
actions is determined by the number of templates that are used in the routes in our dataset. As described in Section
3.1, we are using a set of 1,572 reaction templates for the standard dataset, which is also the size of our action space,
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Figure 3: Overview of how reaction routes are converted from trees into sequences. Here, an example route is
decomposed into a 3-step sequence. Circles represent molecules (reactants, intermediates, building blocks) and squares
represent actions (reactions). The reward at each time-step is a function of the reactants given by a reaction. A state is
defined by either a single or pair of molecules, where in the case of a single molecule, zero-padding is used for the
second “empty” molecule (represented by the white circle). After each time-step in the sequence, the status of each
reactant is evaluated and if the compound is an intermediate (turquoise and purple circles) it will be put in the stack of
unexplored states and decomposed in the next time-step. If the compound is a building block (red, green, and yellow
circles) then it is the end of a branch and will not be added to the state.

A ∈ {0, 1}t×1,572, where t is the total number of reactions (time-steps) sampled in a given route. During inference,
RDChiral (23) is used to get the reactants for the next state given the template and target molecule. The size of the
action space for small and large datasets is given in Table 1 and corresponds to the number of available templates in the
respective dataset.

3.3.2 States

The initial state contains a Morgan fingerprint representation (27) of the target molecule, generated using RDKit (28).
The next states contain the Morgan fingerprints for the unexplored intermediate reactant(s) generated by the next
reaction. Each state can hold up to two molecules. If only one molecule is in the state (as in the initial state or for
uni-molecular reactions), zero padding is added; if there are three or more molecules, only the two largest molecules
are included. Importantly, the molecular states are treated as a stack, meaning that the last molecule added to the state
will be the first explored in the next step, while any other reactants are put in a stack of all unexplored intermediates.
This leads to a depth-first search exploration of the states. When calculating the reward for a given step, all reactants
predicted by the reaction are considered. Each molecule is represented by a 1024-bit Morgan fingerprint, such that the
total dimension of the state is 2048 bits.

3.3.3 Reward Function

Contrary to other route scoring methods (29; 30) that evaluate the complete route, here we need a reward function that
can evaluate the goodness of an intermediate route after each reaction. This poses a challenge, as assessing route quality
before it is complete is inherently more difficult and we cannot use any of the commonly used route scorers. Instead,
we chose here to include two aspects of the states when calculating the reward at each time-step: 1) the condition of the
molecule(s) in the current state and 2) the depth. For a molecule in a route there are three distinct conditions it can
meet: 1) a building block, 2) an intermediate, or 3) a dead end. A dead end means that either no reaction template can
be applied or that the maximum depth has been exceeded. The second component of the reward function, the depth,
simply measures how many transformations the current molecule is away from the target. To determine how much
each condition should contribute to the reward and how to incorporate the depth, we performed an optimization using
Optuna (31); see Table S8 for details. An example of the route rewards for a 4-step route is illustrated in Figure 4.

3.4 Inference

The DT model can be viewed as a policy which predicts the next action. However, it lacks the chemical context such as
knowledge about the building blocks, the route, what actions are applicable to what molecule, when a route is solved,
etc., which is needed during inference. Therefore, we have implemented a retrosynthesis environment to be used in
combination with the DT, as is typically done for RL. During inference the environment is used to apply the predicted
templates to get the new reactants, evaluate the status of the reactants, calculate the reward function, and build and
evaluate the synthesis route. In more detail, the probability for each reaction template is predicted by the DT, which
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Figure 4: Example of a synthesis route with the associated rewards per reaction, showing how the route reward is
calculated from intermediate states. The reward for each step is the average of all reactant molecules in that step and the
total route reward is the sum of the reward over all steps.

determines the first applicable template with the highest likelihood as the next action. The action is used to take a step
in the environment by RDChiral (23), which returns the reactants given the reaction template (action) and the next
molecule (first molecule in the state). Thereafter, the molecules in the new state are sorted based on size and evaluated.
If a molecule in the state is part of the building block set, that branch is solved and thus the molecule does not need to
be further expanded. However, if there are no applicable actions for that molecule or the route exceeds the maximum
depth, the molecule is labeled as a dead end and the route is unsolved. If the molecule, however, is determined to be an
intermediate, then we add it to the stack of states to be expanded.

The environment also monitors for loops in the route that could stem from recurring intermediates. Loops are not
desirable behavior in a route, so if an intermediate occurs more than once in a linear route, the route is terminated and
labeled as unsolved.

3.5 Beam Search

Since beam search has proven to be a useful strategy for various natural language tasks, often resulting in improved
performance, we have implemented it for the RetroSynFormer. Using beam search, the top n templates given a specific
compound (state) are applied at each time-step and evaluated; the same procedure is then applied to each of the n
resulting new states, leading to n2 new states. These n2 states are sorted based on the cumulative route likelihood and
the top n beams kept for the next iteration. This procedure is repeated until either a route is solved or the maximum
depth is reached. The beam search enables the RetroSynFormer to consider multiple routes for each target and this
way increase the likelihood of finding a solved route. The special case of a beam search using n = 1 is equivalent to a
greedy search.

3.6 Evaluation Metrics

To assess the model’s performance on the retrosynthesis task, we computed standard metrics which evaluate a model’s
ability to find solved routes for a given target. Specifically, we measured success rate, defined as the percentage of
targets for which the model identifies a route where all starting materials are available in stock. Additionally, we assessed
top-1 accuracy, which calculates the percentage of targets for which the predicted retrosynthetic route is identical to the
ground-truth route. To further compare predicted and target routes, we also evaluated the model using distance metrics
to compare the similarity of the predicted routes with the target routes. We calculated the route similarity using the tree
edit distance (TED). Since exact TED computation is often infeasible, we used an approximation based on an LSTM
model, following Genheden et al. (32).
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To further evaluate the predictions made by the model we also calculate the action accuracy and reaction class accuracy.
Here, we compare each action in the predicted routes to the corresponding step in the target route. If the predicted and
target routes are not the same length, we exclude the additional actions of the longer route in order to calculate these
accuracies.

Finally, we assess the route quality using the DeepSet route score described in Yujia et al. (33) and implemented
in rxnutils (34). This score has incorporated human expert assessments of synthesis routes and can be used to
categorizes routes as either “good” for scores between 0 and 5, “plausible” if the score is between 5 and 9, or “bad” if
the score is between 9 and 15.

3.7 Baseline

As a baseline, we trained a template-based one-step retrosynthesis model on the reactions from the same routes as
the RetroSynFormer model using AiZynthTrain (24). We then performed retrosynthesis experiments with the trained
one-step model using AiZynthFinder on the N1 and N5 target sets from PaRoutes(4). In these experiments, we used the
same set of building blocks (stock) as in the RetroSynFormer experiments. We used the default AiZynthFinder settings,
i.e., 100 iterations of Monte Carlo tree search, and a maximum depth of 6 (the same as RetroSynFormer).

4 Results

The RetroSynFormer was used to predict routes for 1,500 random targets from the N1 test set, and 1,500 random targets
from the N5 test set. The training and evaluation steps were repeated three times for statistical analysis. For these
experiments, RetroSynFormer was trained on one randomly sampled route per unique target (e.g., 67,180 routes for the
standard dataset). By default, the RetroSynFormer returns only the first route found via the beam search, although it
can also generate multiple routes. Unless otherwise stated, we use a beam width of 50 and return the route with the
greatest cumulative likelihood; we call this model RetroSynFormer50. As a baseline, AiZynthFinder was trained as
described in Section 3.7 and evaluated on the same test sets. For comparison with the baseline, the highest ranked route
from AiZynthFinder was extracted for each target.

4.1 Retrosynthesis Performance

There are many approaches for evaluating the performance of retrosynthesis algorithms (4), and one of the most
common and also most important metric is the success rate (the percentage of targets for which a solved route is found).
This is a prerequisite for evaluating other aspects of the predictions such as the quality of the sampled routes. However,
because we have reference routes for the targets as extracted from patents, we can not only calculate if the predicted
route is identical to the target route (the accuracy), but also the similarity.

A summary of the RetroSynFormer50 performance on the N1 and N5 targets is presented in Table 2. Although
RetroSynFormer50 results in a slightly worse success rate than the AiZynthFinder baseline, we can see that it performs
comparably in many other aspects. For example, the success rate for the N1 test set between the models differs by less
than 2%, and the top-1 accuracy differs by only 0.039 and is nevertheless rather low for both models. Compared to
the N1 set, the N5 set is more difficult for both models as the success rate and top-1 accuracy is lower. The TED and
average route length in Table 2 are only calculated for the solved routes. Here we only see some smaller differences
between the models. It seems like the difference between the target and predictions in general are larger for the N5 set
and also that on average the routes for the N5 targets are slightly longer, although the routes are on average short.

In Figure 5a we can see the distribution of route lengths for the predictions compared to the targets. We observe that the
distributions for the AiZynthFinder routes and RetroSynFormer routes are very similar and, interestingly, that the target
routes are in general longer compared to the predicted routes. This suggests that it is possible to find shorter routes with
the available stock than what was used for the original patent routes. In Figure 5b, we plot the distribution of the route
reward in the predicted routes from RetroSynFormer compared to the target routes. The predicted routes show a wider
distribution than the target routes, and the median reward is rather different. Equivalent figures for results on the N5 set
are available in Figures S8a and S8b - and we observe the similar trends as for the N1 set.

4.2 Complementarity of Retrosynthesis Approaches

As demonstrated, the RetroSynFormer is almost comparable to AiZynthFinder with respect to the success rate. A
natural question that arises is if the solved targets are the same across the models, or if the targets solved by each model
are complementary. As described above, the two models have been evaluated on the same N1 and N5 target sets, and
the number of targets solved by each model is reported in Table 3. Here, we can see that 88.5% of the N1 routes are
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Table 2: Performance of the RetroSynFormer compared to the AiZynthFinder baseline on retrosynthesis planning tasks
using a diverse suite of evaluation metrics. Arrows indicate the direction of better performance for each metric.

RetroSynFormer50* AiZynthFinder

Test set N1 N5 N1 N5

Success rate (%) ↑ 0.924 0.899 0.939 0.924

Top-1 accuracy ↑ 0.106 0.058 0.143 0.071

Mean time per route(s) ↓ 68.1 81.9 5.45 5.8

Mean TED ↓ 5.58 7.08 5.40 7.12

Mean # reactions per route ↓ 2.34 2.55 2.52 2.92

* RetroSynFormer results show averages over three runs using beam width 50.
Standard deviation for the RetroSynFormer models is ≤ 0.004 for the success rate,
≤ 0.001 for the top-1 accuracy, ≤ 1.7 for the mean time per route, ≤ 0.05 for the
mean tree edit distance (TED), and ≤ 0.01 for the mean # reactions per route.

(a) Histograms of N1 route lengths, measured as the number
of actions per route, for each route set.

(b) Stacked bar plot showing the distribution of N1 route
rewards in the target versus RetroSynFormer-predicted routes.

Figure 5: Route characteristics for the N1 test set target routes compared to the RetroSynFormer and AiZynthFinder
solved predictions for the same targets. a) The median reward for the route length is 3 for the target routes and 2 for the
RetroSynFormer and AiZynthFinder routes, indicating solved routes are generally shorter than those in the reference
dataset. b) The median reward for the route reward is -6 for the target routes and -2 for the RetroSynFormer routes.

solved by both models and that 3.9% and 5.4% are solved by only RetroSynFormer and AiZynthFinder, respectively.
This means that only 32 routes (2.1%) could not be solved by either model. Similarly for the N5 set, only 3.1% of
targets could not be solved by any model. To conclude, by combining both methods we can solve 97-98% of the routes
and potentially reduce the error compared to using an individual model.

Table 3: Number and percentage of the N1 and N5 targets which are solved by only RetroSynFormer, only AiZyn-
thFinder, both models, and no model. There are 1,500 targets in each of the N1 and N5 sets.

N1 N5
Solved By Count Percent Count Percent

Only RetroSynFormer 59 3.9% 67 4.5%
Only AiZynthFinder 81 5.4% 112 7.5%
Both 1,328 88.5% 1,274 84.9%
None 32 2.1% 47 3.1%
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In Figure 6 we compare an example route generated by RetroSynFormer to the route generated by AiZynthFinder for
the same substituted benzamide target from patent US-8680159-B2, a patent for bradykinin 1 receptor modulating
compounds. In this example, RetroSynFormer generates a route in two steps and is very efficient. The route starts
with a reductive amination, a step with some support from the literature (e.g., US-8519124-B2 or WO20/103896
patents), followed by a deprotection of the amine group. The patented target route also ends with a reduction of a
protected aminocyclohexanone and naphthyridine, followed by deprotection, but takes some steps to build up the
aminocyclohexanone intermediate from cheaper starting materials. AiZynthFinder, on the other hand, fails to employ the
template for the reductive amination, and thus is unable to break the bond between the naphthyridine and cyclohexane
rings. After many unproductive steps, the search hits the maximum tree depth and stops at a starting material not in
the commercial stock. Nevertheless, we want to stress that this example only serves to illustrate a scenario where
RetroSynFormer produces a route complementary to AiZynthFinder, and we could likely identify other examples where
AiZynthFinder is better suited to solve a given target than RetroSynFormer.

Figure 6: Comparison of an example route generated by RetroSynFormer for a substituted benzamide target from patent
US-8680159-B2 (top panel) to the route generated by AiZynthFinder (middle panel); the target route is shown for
reference (bottom panel). The final product is the same in all three panels and denoted with a golden box. The green
boxes indicate purchasable building blocks and the red box indicates a dead-end state that is not a purchasable building
block (i.e., maximum route depth was reached).

4.3 Analysis of Chemistry in Predicted Routes

To gain a deeper understanding of the model behavior, we further analyzed the reactions in the solved predicted routes,
i.e., the routes that terminated in purchasable (in-stock) starting material(s). In Table 4, we show the that the total
number of reactions observed in the solved routes is on the order of 3,000 compared to 4,000 in the target routes, and
observation that is also reflected by the shorter average route lengths of RetroSynFormer-predicted routes (Table 2).
Furthermore, these reactions are represented by about 650 and 700 unique templates for the RetroSynFormer and
AiZynthFinder, respectively, which is fewer than the approximately 800 unique templates in the target routes. However,
the unique number of reaction classes is about 60 for both the predicted and target routes. This shows that there is a
great redundancy in the templates, i.e., several templates represent similar reactions, such that the model can predict
different templates that lead to identical disconnections.
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In Figures S9a and S10a we plot histograms of the 15 most common reaction templates in the N1 and N5 target routes,
respectively, and compare them to the histograms from the predicted routes. We can observe that there is a significant
discrepancy—popular templates in the target routes are not necessarily the most frequently used templates in the
predicted routes. Furthermore, we plot histograms of the 15 most common reaction classes in the targets routes in
Figures S9b and S10b, and we observe that there is significantly less discrepancy in the templates between the reference
N1 and N5 routes compared to those in the predicted routes for same sets. This is also reflected in the higher class
accuracies for the RetroSynFormer and AiZynthFinder compared to the action accuracies (Table 4). In general, both the
action and class accuracies are lower for the RetroSynFormer than for AiZynthFinder, and, generally speaking, the
accuracy is lower for the N5 set than for the N1 set.

We also looked at the solved routes separately and calculated the route accuracy for solve routes (Table 4). Naturally,
we observe that this accuracy is slightly higher than when we also include unsolved routes (Table 2). If we disregard the
order of the steps, we also observe a slight increase in accuracy (e.g., +0.05 for route accuracy on the N1 set using
the RetroSynFormer), indicating that although some of the predicted routes are overall correct, the exact order of the
individual actions might differ compared to the target routes.

Finally, we estimated route quality by the recently proposed DeepSet route score (33) for both the predicted routes and
their targets. We observe that scores for the RetroSynFormer are marginally better (lower) than for AiZynthFinder on
both the N1 and N5 datasets. However, as averages for predicted and patented references routes in both datasets are
<3.5, they can all be classified as “good". This indicates that on average the routes can be used as-is to plan the wet-lab
experiments and that they do not require modification by an experienced scientist.

Table 4: Summary statistics, action/class accuracies, and route scores for the solved routes exclusively. Arrows indicate
the direction of better performance for each metric.

RetroSynFormer50 AiZynthFinder Targets
N1 N5 N1 N5 N1 N5

Number of total reactions 3,047 3,189 3,234 3,556 4,093 4,567
Number of unique templates 669 650 712 706 795 812
Number of unique reaction classes 63 61 62 63 62 61
Action accuracy ↑ 0.266 0.223 0.312 0.239 - -
Class accuracy ↑ 0.374 0.321 0.415 0.333 - -
Route accuracy ↑ 0.127 0.084 0.163 0.096 - -
Unordered route accuracy ↑ 0.177 0.125 0.216 0.147 - -
DeepSet route score (33) ↓ 3.139 3.313 3.336 3.531 3.137 3.411

4.4 Model Exploration 1: Beam Search

The results presented above were achieved using a beam width of 50. A high beam width naturally results in a larger
search space and thus a higher probability of success; however, for the same reason, it also increases the search time.
Thus, there is a trade-off between optimizing success rate and search time. Using the trained model, we have evaluated
the effect of the beam width on route predictions for the targets in the test set (Figure 7). We can here clearly see that
the success rate increases logarithmically with the beam width, as expected. However, when increasing the beam width,
the search time increases exponentially and becomes a limiting factor for choosing the beam width. Interestingly, we
don’t see the expected increase in top-1 accuracy or decrease in TED with increasing beam width. Both of these metrics
show an optimal beam width of 10 and they deteriorate slightly for high beam widths. This shows that there is not a
clear correlation between the success rate and the top-1 accuracy, and highlight the importance of considering both
metrics for retrosynthesis.

4.5 Model Exploration 2: Reward Function

A hyperparameter search was performed as described in Section 3.3.3. Surprisingly, we observed that the model was
not very sensitive to the choice of reward function. In Table 5 we demonstrate this by showing the success rate and
top-1 accuracy for models trained using alternative reward functions. Here, we have changed the signs and removed the
scaling with depth parameter. Details for all the reward functions can be found in Table S9. The results show that the
default reward used in the main results presented does indeed give the highest success rate. However, the difference
between the other rewards are in general small and if the top-1 accuracy is considered instead, the best reward function
is another one denoted Remove Scaling Building Block Reward. This is because the reward was optimized with regards
to the success rate rather than the top-1 accuracy.
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(a) Success rate against beam width. (b) Tree edit distance against beam width.

(c) Top-1 accuracy against beam width. (d) Average time per target against beam width.

Figure 7: Effect of increasing the beam width on RetroSynFormer performance on the N1 and N5 sets. a) Success rate
versus beam width. b) Tree edit distance (TED) versus beam width. c) Top-1 accuracy versus beam width. d) Average
search time / target versus beam width. Error bars indicate the standard deviation of three separate model predictions in
all plots.

4.6 Model Exploration 3: Action Space Size

All results presented above have used the standard dataset which includes 1,572 templates. To show that the approach is
also useful for other action spaces that are of larger or smaller sizes, we have trained RetroSynFormer and AiZynthFinder
with two other datasets, denoted small and large (see Section 3.1 and Figure 2). For the evaluation, we constructed
different N1 and N5 test sets for the different action space sizes by randomly sampling 1,500 routes from each N1 and
N5. This is done to ensure that we evaluate the models on targets with reference routes consisting of the full template
space. The results of this evaluation can be found in Table 6. The results indicate that the model is able to solve the
majority of the targets for all action space sizes and that the success rate does not differ significantly depending on the
template set. We can also observe that the top-1 accuracy decreases when the number of available templates increases.
This is not surprising as when there are more disconnections to choose from, the probability of predicting the correct
one decreases and it is likely that there are more reaction templates that are plausible and/or very similar. In addition,
the additional templates which are added when scaling up the template space will be less frequently used and might be
only used in very few routes, something which may also explain the drop in top-1 accuracy.

We further sub-sampled the targets in the N1 and N5 sets to select the targets that are common between the small,
medium, and large datasets; there are 232 and 248 such targets for N1 and N5, respectively. The performances
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Table 5: Different reward functions and their impact on the model performance.

Reward function Success rate Top-1 accuracy

N1 N5 N1 N5

Default 0.924 0.899 0.106 0.058

Increasing building block reward 0.916 0.889 0.099 0.054

Decreasing building block reward 0.916 0.891 0.107 0.056

Remove scaling building block reward 0.912 0.890 0.110 0.064
Flipping sign intermediate score 0.914 0.890 0.106 0.054

Remove scaling intermediate 0.920 0.898 0.105 0.060

Flipping sign dead end score 0.921 0.899 0.107 0.058

Remove scaling dead end 0.915 0.898 0.103 0.059
* RetroSynFormer results show averages over three runs. Standard deviations for all
RetroSynFormer models are ≤ 0.006 for success rate and ≤ 0.005 for top-1 accuracy.

of RetroSynFormer and AiZynthFinder on those targets are shown in Table S10. Interestingly, the largest drop in
performance is observed for the models trained on the small dataset, where the success rate of RetroSynFormer drops
by almost 10% compared to the entire small target set. The success rate of AiZynthFinder trained on the small dataset
does not show the same drop in success rate, but the top-1 accuracy is noticeable lower.

Table 6: Performance of retrosynthesis models for different template sets.
Dataset Model Test set Success Top-1 TED Avg. route

rate Accuracy length

Small
RetroSynFormer50 N1 0.950 0.182 4.426 2.291

N5 0.833 0.101 5.428 2.472

AiZynthFinder N1 0.923 0.223 4.065 2.343
N5 0.917 0.125 7.121 2.923

Standard
RetroSynFormer50 N1 0.924 0.106 5.5836 2.337

N5 0.899 0.058 7.075 2.548

AiZynthFinder N1 0.939 0.143 5.398 2.517
N5 0.924 0.071 7.120 2.923

Large
RetroSynFormer50 N1 0.929 0.082 6.168 2.276

N5 0.887 0.045 7.54 2.531

AiZynthFinder N1 0.939 0.115 6.112 2.538
N5 0.925 0.073 7.713 3.019

* RetroSynFormer results show averages over three runs. Standard deviations of all RetroSynFormer models
are ≤ 0.004 for success rate, ≤ 0.003 for top-1 accuracy, ≤ 0.09 for TED, and ≤ 0.01 for route length.
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5 Discussion

We have presented a novel approach, RetroSynFormer, for retrosynthesis prediction that uses the recently developed
DT to generate synthesis routes conditioned on a target compound. The DT model is one of a few DL models that
recasts an RL problem as a sequence modeling problem. We have herein shown for the first time that it is possible to
adapt the DT model for problems in the chemical domain. Nevertheless, RetroSynFormer shares many implementation
details with established retrosynthesis methods: it uses a fixed set of templates to break down molecules into reactants—
just as template-based single-step models—and it uses fixed stock of building blocks to indicate the termination of
retrosynthesis pathways—as do the majority of published multi-step retrosynthesis algorithms. In contrast, although
RetroSynFormer predicts the next reaction autoregressively, it utilizes at each step the entirety of the previously
predicted route and thus has the potential to optimize the sequence of reactions over a larger context window than is
possible with existing algorithms.

We have benchmarked the performance of RetroSynFormer in several ways by comparing it to AiZynthFinder, a
common, template-based method that represents a conventional retrosynthesis approach. In terms of success rate, i.e.,
for how many targets the retrosynthesis produces a route that leads to commercial building blocks, the two approaches
are comparable (see Table 2). AiZynthFinder outperforms RetroSynFormer by a few percentage points, but it is unclear
if this difference is of practical importance. When comparing the predicted routes to the reference patent routes for each
target, AiZynthFinder more often reproduces the patented routes—but if we look at the route similarity as computed by
TED, RetroSynFormer is indistinguishable from AiZynthFinder on average. The two approaches also find routes of
comparable length, and the average route score is similar. This indicates that RetroSynFormer produces routes that are
different than the patented route but of similar quality as the routes produced by AiZynthFinder. Encouragingly, the
predicted routes by either algorithm are of similar quality to the patented reference routes, and can in both cases be
classified as “good” according to a recently established route scoring method (33). Furthermore, we have shown that
the two approaches to retrosynthesis are complementary, and together they can predicted routes to commercial starting
material for >97% of the targets investigated (see Table 3). Such a result has been observed for other retrosynthesis
models with AiZynthFinder before (6) and point to a real use-case for RetroSynFormer where the combination of
different algorithms has a higher chance of producing valuable results and can be used in a staged fashion.

The exact reproducibility of the reference patented route is also not a necessity because of the redundancy in the
template set, i.e., different templates could translate into identical or near identical disconnections. We have shown
that both RetroSynFormer and AiZynthFinder show a greater discrepancy to patented routes if one looks at the exact
predicted template rather than the reaction classes represented by the templates. If we instead evaluate route quality
based on class accuracy or disregard the order of the reactions in the route, we generally observe greater agreement with
the patented routes (Table 4). This complexity of calculating route similarity was recently discussed in Genheden et al.
(29). Furthermore, we have again shown that only a fraction of the templates are practically needed to find synthesis
routes, e.g., RetroSynFormer uses only 669 out of the 1572 available templates (standard dataset) to find synthesis
routes for the N1 targets. This has been shown previously for AiZynthFinder (35) and here we have shown it again for
RetroSynFormer. Hence, it is clear that we either 1) should evaluate retrosynthesis planning on a different target set
where more templates are needed, or 2) need better retrosynthesis models that can better employ rarely used templates.

Designing a novel algorithm is not straightforward, and herein we have highlighted a few explorations on the model
design. First, beam search was essential for finding routes to commercial materials; in Figure 7 we show that with
a greedy algorithm we only reach about a 30% success rate. Unfortunately, the scaling factor of the beam search is
considerable, especially compared to a search algorithm such as the one in AiZynthFinder where additional iterations
come at basically a constant cost. However, the success rate increases more steeply with increased beam width in the
RetroSynFormer than with additional iterations in AiZynthFinder (4). This indicates that the effort of increased beam
width could make a practical difference to the produced synthesis routes, compared to AiZynthFinder where it takes many
additional iterations to find additional solutions. We acknowledge that there is still a lot of engineering improvements
possible to increase the efficiency of RetroSynFormer, which is currently much slower than AiZynthFinder. We would
like to argue that currently the reported times in Table 2 are not a fair comparison as the performance of AiZynthFinder
has been optimized over the course of >5 years.

Furthermore, a key challenge in developing RetroSynFormer has been the design of the reward function. As presented
in Section 4.5, we observed that changing the reward function in what seems to be a suboptimal way does not have
a significant negative impact on the results, which may seem counter-intuitive. First of all, it is not straightforward
to evaluate synthesis routes in a step-by-step fashion as we do here as it is not evident how good a single reaction is
until we have the full route. We thus believe that further investigation of different reward set-ups could potentially
be beneficial and it is possible that one could design a better reward function than the one used here. One possibility,
for instance, could involve using a machine learning model to estimate the future reward of a partially constructed
route (14). As a final exploration, we increased and decreased the action space and found that the performance of the
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RetroSynFormer compared to AiZynthFinder does not change noticeably in these experiments. It will be up to future
work to investigate if the model scales well to the sizes available in proprietary datasets (24). Considering the low
fraction of templates used in practice, one could nevertheless argue that having the ability to scale to larger template
spaces is not a requirement for a useful retrosynthesis algorithm.

Herein, we have chosen to evaluate the RetroSynFormer on targets from the PaRoutes dataset because we are interested
in developing a novel algorithm and benchmarking it. In other words, we are more interested in exploring the capabilities
of the DT, i.e., does it work at all, and what are the limitations, rather than improving the state-of-the-art success rate
by a few percentage points. The PaRoutes dataset is ideal in this scenario as it is robust, has been used in several
previous publications, and also provides reference patented routes. An obvious follow-up to this would be to evaluate
RetroSynFormer on other target datasets, e.g., ChEMBL (36), GDB (37), or compound ideas from internal drug
discovery projects. Because the conventional AiZynthFinder is already successfully deployed in drug discovery projects
(10), we would like to identify areas where a different algorithm like RetroSynFormer could bring additional value.
We have started in this work to identify that RetroSynFormer is in many ways complementary to AiZynthFinder, but
more work is needed. It would be especially interesting to show the advantage of the memory inheritance feature of the
Decision Transformer, where we may base the prediction of the next action on all previously predicted actions (beyond
a single route). To enable this, we would need to design a special target set because it is likely that this feature would
only be important for certain classes of compounds.

6 Conclusion

We have presented RetroSynFormer, a novel approach to retrosynthesis that treats the task as a sequence modeling
problem. We have demonstrated that the model can find a synthesis route for 92% of the N1 targets and 90% of
the N5 targets from the PaRoutes suite of retrosynthesis benchmarks, and that it can be used complementarily with
AiZynthFinder to solve >97% of targets. Our method is unique in its approach as it is the first time a DT has been
used in the chemical domain. The RetroSynFormer treats retrosynthesis prediction as a sequence modeling task and
conditions its predictions based on previous reactions, targets, and rewards, thus suggesting disconnections using greater
global awareness than more conventional approaches. With some additional developments and benchmarks, especially
on code optimization—we believe that RetroSynFormer will form a valuable tool in computer-aided synthesis planning.
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A Optimization and Reward Settings

In Tables S7–S8 we describe the search space for the DT and reward parameters, which were optimized using Optuna.
In Table S9 we provide details on the reward parameters for the alternative reward functions described in Table 5.

Table S7: Search space for the DT parameters and the optimal values used for training the DT model.
Model parameter Search range Optimal value

activation_function {relu, silu, gelu, tanh, gelu_new} relu
action_tanh {true, false} false
attn_pdrop {{0.01x | x ∈ Z, 1 ≤ x ≤ 20}} 0.02
embd_pdrop {{0.01x | x ∈ Z, 1 ≤ x ≤ 20}} 0.2
hidden_size {32, 64, 128, 256, 512, 1024, 2048} 256
n_heads {2x | x ∈ Z, 0 ≤ x ≤ 32} 4
n_layers {2x | x ∈ Z, 0 ≤ x ≤ 32} 26
resid_pdrop {{0.01x | x ∈ Z, 1 ≤ x ≤ 20}} 0.08

Settings Value

# epochs 300
Maximizing Success rate

Table S8: Search space for the reward parameters and the optimal values used for training the DT model.
Hyperparameters Search range Optimal value

Building block reward {0, 0.001, 0.01, 0.1, 0.25, 0.5, 1, 2, 4} 0
Building block scale with depth {0, 0.01, 0.1, 0.5, 1, 2} 2
Intermediate reward {0,−0.001,−0.01,−0.1,−0.25,−0.5,−1,−2,−4} -2
Intermediate scale with depth {0, 0.01, 0.1, 0.5, 1, 2} 1
Dead-end reward {0,−0.001,−0.01,−0.1,−0.25,−0.5,−1,−2,−4} -2
Dead-end depth {0, 0.01, 0.1, 0.5, 1, 2} 2

Settings Value

# epochs 100
Maximizing Success rate

Table S9: The reward parameters for alternative rewards.
Label Building block Intermediate Dead End

Reward Scale Reward Scale Reward Scale

Default 0 -2 1 -2 -2 2
Increasing Building Block Reward 2 -2 1 -2 -2 2
Decreasing Building Block Reward -2 -2 1 -2 -2 2
Remove Scaling Building Block Reward 2 0 1 -2 -2 2
Flipping Sign Intermediate Score 0 -2 1 2 -2 2
Remove Scaling Intermediate 0 -2 0 -2 -2 2
Flipping Sign Dead End Score 0 -2 1 -2 2 2
Remove Scaling Dead End 0 -2 1 -2 -2 0

18

https://doi.org/10.26434/chemrxiv-2025-kd6gb ORCID: https://orcid.org/0009-0000-6436-4178 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-kd6gb
https://orcid.org/0009-0000-6436-4178
https://creativecommons.org/licenses/by/4.0/


A PREPRINT

B Complimentary Results

In Figure S8 we describe the route characteristics for the routes generated by the RetroSynFormer and AiZynthFinder
on the N5 set. In Figures S9 and S10 we present histograms for the most common reaction templates in the N1 and N5
sets, respectively. Finally, in Table S10 we compare the performance of the RetroSynFormer and AiZynthFinder on the
targets that are shared across the N1 and N5 test sets, respectively.

(a) Histograms of N5 route lengths, measured as the number
of actions per route, for each route set.

(b) Stacked bar plot showing the distribution of N5 route
rewards in the target versus RetroSynFormer-predicted routes.

Figure S8: Route characteristics for routes for the N5 test set target routes compared to the RetroSynFormer and
AiZynthFinder solved predictions. a) The median reward for the route length is 4 for the target routes and 2 for the
RetroSynFormer and AiZynthFinder routes. b) The median reward for the route reward is -8 for the target routes and -2
for the RetroSynFormer and AiZynthFinder routes.

Table S10: Performance of retrosynthesis models for different template sets on the 232 N1
targets and 248 N5 targets that are common among across the test sets in Table 6.

Dataset Model Test set Success Top-1 TED Avg. route
rate Accuracy length

Small
RetroSynFormer50 N1 0.805 0.098 6.033 2.609

N5 0.839 0.094 5.294 2.37

AiZynthFinder N1 0.914 0.142 4.746 2.590
N5 0.907 0.093 6.423 2.902

Standard
RetroSynFormer50 N1 0.953 0.102 5.314 2.309

N5 0.898 0.052 6.901 2.397

AiZynthFinder N1 0.935 0.121 5.031 2.396
N5 0.911 0.073 7.059 2.726

Large
RetroSynFormer50 N1 0.958 0.091 5.499 2.147

N5 0.917 0.031 7.136 2.296

AiZynthFinder N1 0.940 0.099 5.293 2.362
N5 0.927 0.065 7.262 2.748

* RetroSynFormer results show averages over three runs. Standard deviations for all RetroSynFormer
models are ≤ 0.02 for success rate, ≤ 0.02 for top-1 accuracy, ≤ 0.15 for TED, and ≤ 0.05 for route
length.
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(a) Reaction template frequency distribution.

(b) Reaction classes frequency distribution.

Figure S9: Histograms of predicted reaction templates and classes for the N1 test set. a) Comparison of the counts for
the 15 most common predicted templates compared to ground truth and baseline. Illustrations of the template IDs can
be found in Table S11. b) Comparison of the counts for the 15 most common predicted reaction classes compared to
ground truth and baseline.
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(a) Reaction template frequency distribution.

(b) Reaction classes frequency distribution.

Figure S10: Histograms of predicted reaction templates and classes for the N5 test set. a) Comparison of the counts for
the 15 most common predicted templates compared to ground truth and baseline. Illustrations of the template IDs can
be found in Table S11. b) Comparison of the counts for the 15 most common predicted reaction classes compared to
ground truth and baseline.
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C Reaction Templates

In Table S11, we present an illustration of the most commonly occurring templates in the predicted reactions from the
RetroSynFormer.

Table S11: Visualization of the most common templates mentioned in Figure S9a and S10a.
Template id Template

94

155

173

263

412

587

801

804

Template id Template

841

854

1123

1180

1250

1355

1368
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