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Abstract  

Protein-protein interactions are at the heart of biological processes. Understanding how 

proteins interact is key for deciphering their roles in health and disease, and for therapeutic 

interventions. However, identifying protein interaction sites, especially for intrinsically 

disordered proteins, is challenging. Here, we developed a deep learning framework to predict 

protein binding sites to 14-3-3 – a ‘central hub’ protein holding a key role in cellular signaling 

networks. After systematically testing multiple deep learning approaches to predict sequence 

binding to 14-3-3, we developed an ensemble model achieving a 75% balanced accuracy on 

external sequences. Our approach was applied prospectively to identify putative binding sites 

across medically relevant proteins (ranging from highly structured to intrinsically disordered) 

for a total of approximately 300 sequences. The top eight predictions were experimentally 

validated in the wet-lab, and binding to 14-3-3 was confirmed for five out of eight sequences 

(Kd ranging from 1.6 ± 0.1 µM to 70 ± 5 µM). The biological relevance of our results was further 

confirmed by X-ray crystallography and molecular dynamics simulations. These sequences 

represent potential new binding sites within the 14-3-3 interactome (e.g., Tau, relating to 

Alzheimer’s disease), and provide opportunities to investigate their functional relevance. Our 

results highlight the ability of deep learning to capture intricate patterns underlying protein-

protein interactions, even for challenging cases like intrinsically disordered proteins. To further 

the understanding and targeting of 14-3-3/protein interactions, our model was provided as a 

freely accessible web resource at the following URL: https://14-3-3-bindsite.streamlit.app/.  
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Introduction  

 
Protein-protein interactions (PPIs) are fundamental to all biological processes, from 

maintaining cellular homeostasis1 to driving disease mechanisms.2 Among the numerous 

protein families facilitating PPIs, the family of 14-3-3 proteins stands out due to their ubiquity 

and high conservation across isoforms.3,4 These ‘central hub’5 proteins hold a key role in 

cellular signaling networks, as they are known to interact with over 1200 protein clients,6,7 and 

are involved in pathways related to metabolism, apoptosis, cell signaling and tumor 

development. Protein interaction with 14-3-3 can yield a multitude of effects8, e.g., the 

structural stabilization of the client protein9,10, the masking of functional sequences11,12, or 

bringing two proteins together.13,14 Owed to these reasons, elucidating the 14-3-3 interactome 

(protein clients and/or their binding sites) has a key relevance to gain insights into cellular 

regulation and mechanisms of disease, as well as to provide new avenues for therapeutic 

intervention. 

While it is important to identify 14-3-3 binding partners and their binding sites, it is a daunting 

task. Proteins can interact with each other in a wide variety of ways,15 and the exact protein 

interaction sites and corresponding interaction effects are often unknown.15 Combinatorial 

exploration in the wet-lab is both costly and time intensive.16–18 Owed to these reasons, deep 

learning19 – a subfield of artificial intelligence based on neural networks – has gained 

significant traction to predict PPIs.20–23 Deep learning, thanks to its ability to extract complex 

and non-linear information from large and high-dimensional data,19 bears promise to 

accelerate the identification of unknown binding sites involved in PPIs. To date, however, deep 

learning approaches have found only limited experimental validation in exploring protein 

interactomes,20,24 and only a few approaches have focused on protein interactions with 14-3-

3,25,26 or phosphorylated proteins in general. Furthermore, 14-3-3 proteins interact with 

multiple and diverse intrinsically disordered phosphorylated targets,27 which challenges the 

usage of established deep learning approaches that rely on protein structure to perform a 

prediction.23  

Stemming from these observations, this work aims to explore the 14-3-3 protein interactome, 

by leveraging deep learning on protein sequence data. Our approach was designed to predict 

putative sites of protein binding to 14-3-3. After training our model on publicly available data, 

and benchmarking it in comparison with existing models,26 we validated it prospectively in the 

wet-lab. Via a combination of model interpretation, crystal structure determination, and 

molecular dynamics, we show the potential of the proposed approach to prioritize putative 

interaction sites of proteins with 14-3-3.  
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Results and Discussion  

Predicting binding to 14-3-3 with deep learning 

Study setup. Predicting PPI sites with machine learning is a challenging endeavor, especially 

when dealing with intrinsically disordered proteins, like the typical 14-3-3 binding partners.27 

In these cases, structure-based approaches inevitably fail.28 To this end, the prediction task 

was cast into modeling the 14-3-3 interaction with the individual binding sites of known clients 

using their amino acid (AA) sequences (Fig. 1a). We used an existing dataset26 (Table 1), and 

represented each binding site as a peptide sequence comprising the seven amino acids 

preceding and seven amino 

acids following the 

phosphorylated site (for a total of 

15 AA per binding site, Fig. 1a). 

Moreover, an additional set of 92 

phosphopeptides measured in-

house for their binding to 14-3-3 

was used for model validation 

(Table 1).  

Model training and benchmarking. The publicly available data was used for model training, 

and it was split ten times into training (67.5%), validation (22.5%), and test sets (10%). We 

represented the AA sequences numerically using four approaches (Fig. 1b): 

• One-hot encoding, where each amino acid in the peptide is represented as a binary vector 

indicating its type. This representation captures the information in the sequence without 

introducing prior assumptions or additional knowledge about the amino acids18. 

• Learnable embeddings, where amino acids are represented using vectors learned by the 

model during training.16 These embeddings are updated during training to help capturing 

contextual and relational information about the amino acids in the sequence. 

• BLOcks SUbstitution Matrix (BLOSUM 62)29, where amino acids are encoded with 

substitution matrix scores, which reflect evolutionary conservation and property similarities 

between amino acids. This representation incorporates biochemically relevant information 

about amino acid substitutions. Phosphorylated amino acids were indicated via a 

dedicated binary flag in the corresponding position (see Materials and Methods). 

• Physico-chemical descriptors, where each amino acid in the peptide is represented by 18 

pre-computed numerical features30 (Supp. Table S1). For each peptide, the computed 

amino acid features were concatenated and used for the prediction.   

Each representation was combined with the following deep learning architectures (Fig. 1c): 

• Multilayer perceptron (MLP)31, where complex peptide features are progressively 

extracted through multiple layers of fully-connected neurons32, without considering 

positional information. 

• Convolutional neural network (CNN)33, in which windows (‘kernels’) slide over an input 

sequence, and learn to weight input elements at each window. CNNs capture local 

patterns in sequences, which are combined to predict the global properties of a sequence 

(e.g., binding).  

• Recurrent neural network with gated recurring units (GRU)34, which iterates over the input 

sequence and encodes information from the N- to the C-terminus, compresses the 

information into a ‘hidden state’, which is then used to provide a prediction. 

Table 1. Datasets used in this study, along with the number of AA 

sequences contained, and their labels (binders, non-binders). The 

publicly available dataset was used for model training and selection, 

and the in-house set for external validation. 

Dataset No. Binders Non-binders 

Training/validation 

set26  
715 360 (50%) 355* (50%) 

In-house set 92 58 (63%) 34 (37%) 
*93 experimentally determined (26%), and 262 (83%) likely non-binders.  
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Figure 1. Predicting peptide sequence binding to 14-3-3 with deep learning. (a) The information on tested 14-3-3 

protein interactions (Table 1) was converted into a ‘machine readable’ format. Seven amino acids before and after the 

phosphorylated site were used to form a sequence for deep learning, which is labeled according to its binding to 14-3-3 

(yes/no). (b) Representations of amino acid (AA) sequences for model training. One-hot encoding represents each AA 

with a unique binary vector capturing its position in the sequence. Learnable encoding starts with a random numerical 

vector per amino acid and updates the vectors during training. BLOSUM62 uses substitution scores derived from 

evolutionary conservation. Descriptors are pre-defined features capturing the physico-chemical properties of each amino 

acid. (c) Neural network architectures. Multilayer perceptron (MLP) consists of fully connected layers. Convolutional 

neural networks (CNNs) slide windows over the input sequences, and Gated recurrent units (GRU) iterate over the input 

AAs in a stepwise manner. (d) Balanced accuracy per architecture-representation combination (computed on 10 test sets 

obtained via repeated splitting). Statistically significant differences are marked with “*” (paired Wilcoxon test,  = 0.05). 

(e) Interpretation of the best models via input perturbation. By randomly shuffling all amino acids in any given position, 

we computed the relative change in the model predictions. Color indicates the relevance of the perturbation in each 

position, normalized by maximum achieved change, ranging from 0% (white: no impact) to 100% (blue: maximum impact). 
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For each representation-architecture combination, we performed hyperparameter tuning and 

evaluated the model on the 10 test sets (obtained via stratified splitting). The best model for 

each combination was evaluated on the test sets using balanced accuracy (BA), which 

captures the global model performance (Materials and Methods, Eq. 4). In general, no 

statistically significant difference between model architectures was observed (Wilcoxon signed 

rank test, α  = 0.05). Moreover, the chosen sequence representations were the main drivers 

of performance, with different trends based on the chosen architecture (Fig. 1d). For each 

architecture, we chose the representation leading to the highest balanced accuracy (average 

over 10 test-set splits), resulting in: (a) MLP with learnable embedding (BA = 77±4%); (b) CNN 

with BLOSUM 62 encoding (BA = 73±5%); and (c) GRU with BLOSUM 62 encoding (BA = 

78±6%). Moreover, an ensemble model was obtained by averaging the prediction of each 

model. While this model did not improve the overall balanced accuracy (BA = 77±5%), it 

increased the capacity to correctly recognize binding sequences (Supp. Table S2). 

The models were then retrained with all available data. Their performance was benchmarked 

in comparison with 14-3-3-Pred.26 14-3-3-Pred also combines three machine learning 

approaches (MLP, support vector machine [SVM], and position-specific scoring matrix 

[PSSM]) into an ensemble model. Both 14-3-3Pred and our models were validated on the in-

house set (92 peptides, Table 1), as it comprises peptides external to all considered models 

and exhibiting diverse recurring AA motifs (Supp. Fig. S1) – hence allowing us to assess the 

potential for prospective validation. In addition to balanced accuracy, we calculated the 

capacity of the models to minimize false positives (precision) and to correctly recognize 

binding and non-binding sequences (recall and specificity, see Methods, Eq. 1-3). The models 

developed in this work systematically outperformed 14-3-3-Pred in global performance 

(balanced accuracy), and in most cases in terms of identification of true positives (recall, Table 

2). Moreover, they consistently ranked second-best in the ability to minimize false positives 

(precision and specificity, Table 2). Finally, the ensemble approach balanced the strengths 

and weaknesses of each individual deep learning model. 

 
Table 2. Model benchmarking on an external test set. Our model was compared with an existing one (14-3-

3Pred) on a set of 92 external peptides, across various classification metrics: balanced accuracy (BA), Precision 

(Pr), Recall (Rc), and Specificity (Sp) (Methods, Eq. 1-4). For each classification metric, the best and second-best 

performance are highlighted in boldface and with underlining, respectively. 

Model Approach BA (%) Pr (%) Rc (%) Sp (%) 

This work MLP (learnable) 71 81 84 59 

CNN (BLOSUM 62) 71 82 75 67 

GRU (BLOSUM 62) 73 82 84 63 

Ensemble 75 82 91 59 

14-3-3-Pred26 MLP 60 74 71 48 

SVM 61 89 29 93 

PSSM 60 74 71 48 

Ensemble 65 82 64 67 

Model interpretation. To shed light onto the binding patterns learned by the models, we 

conducted a virtual mutation study. We randomly shuffled (15 times) amino acids occurring in 

each position, except for the phosphorylated amino acid, of the training peptides and used 

each model to predict the binding probability of the ‘virtually mutated’ sequences (Fig. 1e). 

The AAs comprised between -5 and +3 positions contributed the most to the predictions across 
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models, in alignment with previous findings.26 Moreover, the amino acids in the -3 and +2 

positions yielded the largest average change in predictions when perturbed. This is in line with 

structural biology observations, as the occurrence of arginine and proline at these positions is 

the most common binding motif for the interaction with 14-3-3.35 Finally, each modeling 

approach has its own ‘prediction hallmark’, with different AA positions having different 

relevance (albeit relatively similar for CNN and GRU, both based on BLOSUM62 

representation, Fig. 1e). This underscores that, although the individual models are trained on 

the same data, they capture distinct sequence-binding information, suggesting that this 

diversity enables the ensemble approach to balance their respective strengths and 

weaknesses.  

Prospective model application 

Experimental validation of binding sites to 14-3-3. We applied our model prospectively to 

identify putative, previously unidentified, binding sites with 14-3-3. As a case study, we 

selected seven medically relevant proteins: forkhead box O3 (FOXO3),36 Tau,37 Myc,38 Bcl-2-

associated agonist of cell death (BAD),39 Notch-4,40 Cystic fibrosis transmembrane 

conductance regulator (CFTR),41 and p53.42 These proteins contribute to a wide array of 

cellular processes36,39,43 (e.g., metabolism, cell survival and death) and are involved in 

diseases like cancer44,45 (e.g., BAD, p53 and Notch-4), Alzheimer’s (Tau) and cystic fibrosis 

(CFTR).46 The structures of these proteins range from ordered (p53, CFTR and Notch-4: 

experimental/predicted disorder ratio47,48 between 0% to 26%) to partially and highly 

disordered (Myc, FOXO3, BAD, Tau; experimental/predicted disorder ratio47,48 ranging from 

58% to 95%, Supp. Table S3). Hence, they constitute an interesting and diverse test case for 

the 14-3-3 interactome. 

For the selected proteins, their amino acid sequence was obtained from UniProt.49 All serine 

and threonine residues were localized and a sequence window of 15 amino acids was 

obtained (-7 and +7 around such amino acids), leading to a total of 830 sequences. These 

sequences were further analyzed with PhosphositePlus50 to predict whether they are 

phosphorylated in vivo. Only sequences labeled as phosphorylated (either according to 

literature40 or to PhosphositePlus) were retained, resulting in a library of 296 peptides. These 

sequences were ranked by the ensemble model for their predicted binding to 14-3-3. 

Importantly, our model identified known binding sites for all proteins (13 in total, across Tau, 

BAD, FOXO3, Notch-4, CFTR, Myc and p53; Supp. Table S4), further corroborating the 

predictive ability and applicability of our approach. 

From the model predictions, we filtered out the known binders, and selected eight top-

scoring sequences, first ranked based on the majority vote of the ensemble model, and then 

by average prediction score across the three models (1-8, Table 3). Moreover, two bottom-

scoring sequences were picked as negative controls (9-10, Table 3). These peptide 

sequences were obtained with a N-terminal fluorescent label to measure their binding affinity 

to 14-3-3γ via fluorescence anisotropy (FA) assays (Figure 2). Three out of eight ‘positive’ 

peptides (37%) showed strong, low-micromolar binding affinities (as measured via their 

dissociation constant [Kd], Table 3), equal to Kd = 1.6 ± 0.1 μM (1, FOXO3 pS413), Kd = 8.6 ± 

0.8 μM (2, Tau pT245), and Kd = 15.9 ± 1.9 μM (6, BAD pS134). The remaining positive 

sequences showed binding, albeit weaker (Kd ranging from 70 μM to larger than 100 μM), 

except for the CFTR-pS422 peptide, which showed no binding in the FA assay (Figure 2). As 

expected, the negative controls 9 and 10 did not bind, confirming the correctness of the model-

based ranking.  
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Interestingly, peptide 2 (Tau-pT245) showed higher binding affinities than the known 14-3-3 

interaction sites:51,52 Tau-pS214 (Kd = 16.4 ± 0.9 μM) and Tau-pS324 (Kd > 100 μM; Supp. 

Figure S3). This is especially interesting considering that Tau-pT245 is reported to be only 

phosphorylated in a normal, non-Alzheimer brain.53  

Moreover, when comparing our predictions with those of 14-3-3Pred26 and with 14-3-3 Site 

Finder, we observe moderate to no correlations between the predictions on the selected 

sequences (ranging from 0.20 to 0.58). Finally, the ranking obtained by our model correlates 

well with the observed Kd predictions (0.73, Supp. Table S5). These results corroborate the 

predictivity of our approach and its relevance to rationalize sequence binding to 14-3-3. 

 

X-ray crystallography. The binding of the selected sequences was further confirmed and 

molecularly probed by X-ray crystallography through co-crystallization of 14-3-3 with peptides 

1-8 (Fig. 2). Crystal structures were obtained for nearly all peptides that demonstrated binding 

in the FA assay, except for BAD pS134. These experiments validated the interaction of the 

newly discovered phosphorylated peptides to 14-3-3, as evident from the electron density 

maps which reveal the conformation of the peptides within the 14-3-3 binding pocket (Fig. 3a-

f). Structural overlays with previously characterized 14-3-3/peptide complexes show that the 

binding modes of these predicted peptides are comparable to known interactions, indicating 

that these sequences are likely physiologically relevant rather than artificial (Fig. 2g-l).  

The FOXO3 pS413 peptide exhibits an ‘open’ binding mode, bending outward from the 14-

3-3 pocket due to a proline residue at the +2 position (Fig. 2a). A similar binding conformation 

was observed for the GAB2 pT391 peptide,54 which aligns perfectly at its +2 proline with 

FOXO3, and for p53 pT387,55 and bends out of the pocket due to glycine and proline residues 

Table 3. Peptide selection and validation. Eight putative binding sites and two negative controls were selected 

for experimental validation, using the model predictions. Peptides 1-8 were selected by maximizing the predicted 

binding, while peptides 9-10 were selected as negative controls (predicted to be non-binding with high certainty). 

The protein, phosphosite, AA sequence (pS = phosphoserine, pT = phosphothreonine) and model predictions are 

reported, along with the experimentally determined constant of dissociation (KD [mean ± SD, n=3]). Dose-response 

curves are reported in Supp. Fig. S2.  

ID Protein Phosphosite AA sequence 
Model 

KD (μM) 
Outcome Prediction 

1 FOXO 3 413 GLMQRSS(pS)FPYTTKG Binding 0.98 ± 0.02 1.6 ± 0.1 

2 Tau 245 SAKSRLQ(pT)APVPMPD Binding 0.94 ± 0.05 8.6 ± 0.8 

3 Notch 4 1847 FPRARTV(pS)VSVPPHG Binding 0.87 ± 0.08 70 ± 1 

4 Tau 198 SGDRSGY(pS)SPGSPGT Binding 0.85 ± 0.06 71 ± 11 

5 CFTR 422 NNNNRKT(pS)NGDDSLF Binding 0.69 ± 0.14 – 

6 BAD 134 KGLPRPK(pS)AGTATQM Binding 0.68 ± 0.14 15.9 ± 1.9 

7 BAD 118 GRELRRM(pS)DEFVDSF Binding 0.65 ± 0.11 > 100 

8 Myc 294 APGKRSE(pS)GSPSAGG Binding 0.61 ± 0.04 > 100  

9 Tau 111 EEAGIGD(pT)PSLEDEA No binding  0.000 ± 0.0005 – 

10 Myc 262 LHEETPP(pT)TSSDSEE No binding  0.001 ± 0.0009 – 
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at the +2 and +3 positions, respectively (Fig. 2g). The high affinity of FOXO3 pS413 can be 

attributed to key interactions at the protein-peptide interface, including hydrogen bonds 

between FOXO3 residues S411 and S412 and 14-3-3 residues D225, N226 and W230 (Fig. 

S5a). Additionally, FOXO3 F414 interacts with the hydrophobic roof of the 14-3-3 pocket 

composed of L218, I219, and L222. A network of water-mediated hydrogen bonds is formed 

between the FOXO3 backbone and K49, K122 and N175 of 14-3-3. The phosphorylated 

residue of FOXO3 (pS413) is also involved in this hydrogen bond network, thereby stabilizing 

the bent conformation of the peptide (Supp. Fig. S4a). The high-affinity binding of FOXO3 

pS413 was further corroborated by molecular dynamics simulations on the peptide (and the 

sequence extended by 40 AAs within the full-FOXO3 protein, see Materials and Methods), 

showing consistently low root mean squared fluctuation (RMSF) values (Supp. Fig. S5). 

Despite also containing a +2 proline, the Tau pT245 peptide adopts a distinct binding mode, 

extending further into the 14-3-3 pocket (Fig. 2b). The ‘extended’ binding mode is similar to 

peptides such as CRAF pS25956 and TFEB pS211,57 all of which fold back into the pocket 

after a minor turn induced by the +2 proline (Fig. 2h). Conformational variations at the N-

terminal side of the phospho-residue were observed, though the electron density in this region 

was not well-defined. Notably, all newly identified peptide sequences contained a positively 

charged arginine at the -3 or -4 position, consistent with many known 14-3-3 client peptides. 

The binding mode of Tau pT245 was also confirmed by molecular dynamics simulations on 

the tested peptide sequence and its extended version (with 40 additional amino acids, see 

Materials and Methods and Supp. Fig. S5b-c). In this context, Tau pT245 exhibited limited 

fluctuations in its interactions with 14-3-3 over time, as assessed by RMSF analysis (Supp. 

Fig. S5a).  

For NOTCH4 pS1847, electron density was only observed up to the +2 serine, suggesting 

that the remaining residues are disordered (Fig. 2c). Similar C-terminal disorder has been 

reported in crystal structures of the 14-3-3 clients CIC pS17358 and Nedd4-2 pS34259 (Fig. 2i). 

In addition, only the +1 and +2 residues were resolved in the Tau pS198 crystal structure (Fig. 

2d). The -1 tyrosine residue of Tau pS198 was observed in previously reported structures of 

USP8 pS71860 and CRAF pS23361, where it fits into a pocket at the top of the 14-3-3 binding 

groove (Fig. 2j).  

Although BAD pS118 and Myc pS294 exhibited the weakest binding affinities among the 

tested peptides, their crystal structures displayed more ordered C-terminal regions compared 

to Tau pS198 and NOTCH4 pS1847 (Fig. 2e-f). The +1 aspartate residue of BAD pS118 is 

interacting with K122 of 14-3-3, followed by a +3 phenylalanine that shields the negatively 

charged aspartate (Supp. Fig. S5e) – an arrangement that appears unique among known 14-

3-3 binding proteins, as far as we know. Therefore, the structural overlay for the BAD pS118 

crystal structure shows more variation in the C-terminal side of the peptide (Fig. 2k). 

Nevertheless, some similarities were revealed in the overlay with BRAF pS72662 and LKB1 

pT336,63 where BRAF’s +1 glutamate aligns with BAD’s +2 glutamate, and LBK1’s +3 proline 

and +5 leucine occupy the same pocket as BAD’s +3 phenylalanine. Moreover, molecular 

dynamics simulations on the extended version of BAD pS118 (by 20 residues on the N- and -

C terminus of the original BAD sequence) show improved stabilization, compared to the 

shorter peptide, of the interactions (~2 Å reduction in RMSF) across all residues, and 

especially visible from the -4 leucine to the +1 aspartate residues. These analyses further 

support pS118 as a putative binding site of BAD to 14-3-3. 
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Finally, the Myc pS294 peptide forms a slight turn within the 14-3-3 pocket due to its +1 

glycine, similar to CAMKK2 pS51164 and Tau pS21465, where this turn is induced by a +2 

proline (Fig. 2f, 4f). This leads to a highly comparable binding mode among the 14-3-3 client 

peptides. In conclusion, the predicted binding sites of clinically relevant 14-3-3 client proteins 

demonstrated direct interactions with 14-3-3, exhibiting binding modes consistent with 

previously characterized 14-3-3/peptide complexes. This highlights the potential of our 

approach for identifying physiologically relevant phosphorylated binding sites within 14-3-3 

client proteins. 

Conclusions and Outlook  
 
In this work, we developed and validated a deep learning approach for predicting protein-

protein interactions between 14-3-3 proteins and phosphorylated client protein binding 

sites. By leveraging different amino-acid sequence representations and neural network 

architectures, we demonstrated that our models outperform existing tools in terms of 

balanced accuracy, recall, and precision. When combined within an ensemble model, our 

approach provided a robust predictive framework, enhancing the identification of novel 

 
Figure 3. X-ray crystallography on selected peptide binders in comparison with known binders. (a-f) Crystal 

structures of the predicted peptide sequences (colored sticks) in complex with 14-3-3sigma (white surface). Final 

2Fo-Fc electron density contoured at 1.0σ. (a) FOXO3 pS413 (orange), (b) Tau pT245 (cyan), (c) NOTCH pS1847 

(purple), (d) Tau pS198 (pink), (e) BAD pS118 (green), (f) Myc pS294 (blue). (g-l) Crystallographic overlay of 

predicted peptide sequences (g) FOXO3 pS413 (orange), (h) Tau pT245 (cyan), (i) NOTCH pS1847 (purple), (j) 

Tau pS198 (pink), (k) BAD pS118 (green), (l) Myc pS294 (blue) with two known 14-3-3 binding peptides (colored 

sticks) in the 14-3-3 pocket (white surface). Each figure includes a representation of the peptide backbones. 
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binding sites for prospective applications by minimizing false positives compared to the 

state-of-the art. 

Our model was applied to identify novel putative binding sites on biologically relevant 

14-3-3 client proteins (FOXO3, Myc, BAD, Notch-4, CFTR and p53). The model was used 

to screen 300 potential binding sites and to select eight peptide sequences for follow-up 

assays. Experimental validation confirmed the predictive power of our model, with three 

out of eight newly predicted phosphopeptides exhibiting low-micromolar binding affinities 

to 14-3-3, two moderate binders and two weak binders. Structural characterization via X-

ray crystallography further substantiated our findings, revealing binding modes consistent 

with known 14-3-3-client interactions. This includes an ‘open’ binding mode, where 

peptides bend out of the 14-3-3 pocket, an ‘extended’ binding mode, in which peptides 

occupy the entire 14-3-3 pocket, and peptides featuring a disordered C-terminus. The 

identification of such structurally representative 14-3-3 binding motifs, without having 

provided such structural information to our models, testifies to the strength of our deep 

learning approach.  These findings were further corroborated by molecular dynamics 

simulations on longer peptide versions of the putative binding sites. Our study not only 

advances computational predictions for 14-3-3 interactions but also underscores the 

importance of integrating deep learning with experimental validation. The results 

demonstrate that deep learning models can reliably predict biologically relevant binding 

sites, paving the way for more efficient exploration of the 14-3-3 interactome.  

Several challenges and opportunities for future research remain. First, expanding the 

training dataset with additional experimentally validated binding and non-binding 

sequences will likely improve model generalizability. Incorporating sequence context 

beyond the immediate phosphosite region may further enhance predictive accuracy. While 

our model effectively predicts linear phosphopeptide binding motifs, potentially ideal for 

disordered binding partners undergoing protein-protein interactions, future work could 

integrate structural data more comprehensively, potentially by incorporating protein 

tertiary and especially quaternary structure information. Combined, this might strongly aid 

addressing the challenge of refining interaction predictions for disordered regions and 

transient interactions. 

Applying this predictive framework to other phospho-dependent interactions beyond 14-

3-3 proteins could broaden its impact, aiding in the discovery of new regulatory 

mechanisms and therapeutic targets. Additionally, prospective validation of predicted 

binding sites in cellular models and in vivo systems will be necessary to fully establish the 

physiological relevance of our findings. Ultimately, our approach contributes to a deeper 

understanding of cellular signaling and it facilitates the rational design of modulators 

targeting 14-3-3 interactions. Furthermore, by making our model freely available on an 

online platform (https://14-3-3-bindsite.streamlit.app/), without requiring expert deep 

learning knowledge, we provide an accessible tool for researchers to explore 14-3-3 

interactions in their own studies, fostering further discoveries in the field. 

 

 

Materials and Methods 

Data collection and curation 
Publicly available data. We used a previously curated 14-3-3 binding site dataset,26 comprising 338 

experimentally determined binding phosphosites,66 93 experimentally determined non-binding 

phosphosites67 and 22 known binding sequences from the literature.26 Moreover, 230 likely non-binding 

phosphosites obtained randomly were added from proteins of which already two 14-3-3-binding sites 

were defined. In total the data contained 360 sequences labelled as binding and 355 labelled as non-
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binding. Sequences were centered around the phosphorylated amino acid and truncated or padded to 

15 amino acids, if necessary. 

 

In-house test set. An in-house dataset of 92 phosphopeptides tested for binding to 14-3-3 was used for 

model evaluation. 58 of those phosphopeptides are annotated as binders (Kd < 200 µM) and 34 were 

annotated as non-binders (Kd > 200 µM). In cases with multiple affinity scores for different 14-3-3 

isoforms, the strongest binding affinity was picked. Last, we centered the sequences around the 

phosphorylated residues to comply with the training set format, considered 15 amino acids, and applied 

padding when necessary. 

Model training  

Training and hyperparameter tuning. The dataset was split using 10-fold stratified cross-validation 

splitting. 10% was used as the test set and the remaining data was split into training and validation 

(67.5% and 22.5% of the total dataset, respectively). Test peptides with an edit distance on the AA 

sequence equal to or lower than four were removed to avoid data leakage or overestimation of model 

performance. We used a two-staged approach for hyperparameter tuning. First, a ‘broad’ 

hyperparameter space was tested (as recently suggested68), and, later, the top hyperparameter 

configurations (216 for GRU, 324 for MLP, and 1500 for CNN) were further fine-tuned (Supporting Table 

S6). Early stopping on F1 score was used starting from the fifth epoch, with a patience of five epochs. 

The model with the highest F1 score (Eq. 5) in 10-fold validation was selected. The final 

hyperparameters for each model are reported in Supp. Table S7. 

 

Evaluation metrics. The capacity of the model to correctly classify positive (binding) and negative (non-

binding) peptides was quantified via Recall (Rc), Precision (Pr) and Specificity (Sp), computed as 

follows:69 

 
(1) 

 
(2) 

 
(3) 

where true negatives (TN) and true positives (TP) represent the number of correctly identified non-

binders and binders, respectively. Conversely, false negatives (FN) and false positives (FP) refer to the 

number of binders and non-binders that are misclassified. Recall (Eq. 1) indicates the proportion of 

actual binders that the model successfully identifies, specificity (Eq. 2) assesses the reliability of non-

binding predictions, and precision (Eq. 3) measures the capability to minimize false positives.  

 

Moreover, the models were assessed for their global prediction ability, via balanced accuracy (BA) and 

F1-score: 

 
(4) 

 
(5) 

 

Balanced accuracy captures the model performance (correct predictions) normalized by the class 

imbalance, and F1 scores provide an overall evaluation of the model's performance in terms of 

minimizing false positives and negatives. 

 

Peptide representation. The following settings were used for each peptide representation. 

• One-hot-encoding. Each amino acid is assigned a unique vector with a single 1 corresponding to 

the respective index of that amino acid in the amino acid alphabet, with values of 0 in the remaining 
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elements. Phosphorylated amino acids were encoded as a distinct token (and the corresponding 

sparse vector).  

• Learnable sequence embeddings. Amino acids were label encoded with one number per amino 

acid. Phosphorylated amino acids got their own unique label.  

• BLOSUM 62 representation was tested in two formats: (a) by treating phosphorylated amino acids 

as their non-modified versions, and (b) by appending an additional numerical flag ([1,0] for 

phosphoserine and [0,1] for phosphothreonine). Preliminary results showed that the flagged version 

performed better in terms of F1 and balanced accuracy and hence it was used for this study.   

• Peptide descriptors. For each amino acid, 18 descriptors were computed using the peptidy30 

software. Descriptors were concatenated, obtaining a matrix of 15 x 18 descriptors per peptide.  

(see Supp. Table S1).  

Prospective screening on selected proteins  
Library preparation. The amino acid sequence for the selected proteins was obtained from UniProt49 

(UniProt IDs: Tau = P10636-8; Myc = P01106; FOXO3 = O43524; Notch4 = Q99466; BAD = Q92934; 

CFTR = P13569; p53 =Q761V2). All serine and threonine residues were located and a window of 15 

amino acids was obtained (-7 and +7 around such amino acids), leading to a total of 830. These 

sequences were further analyzed with PhosphoSitePlus,50,70 to predict whether they are phosphorylated 

in vivo. Only sequences phosphorylated were according to literature or PhosphoSitePlus were retained, 

resulting in a library of 296 peptides. All sequences were predicted with the ensemble model and ranked 

by scores (average predictions across the models). The top scoring predictions were manually 

inspected, and known binding sites identified according to existing literature were excluded from the 

wet-lab validation (Supp. Table S4).  

Experimental validation 

Peptide materials. Selected peptides were ordered from GenScript71 with a minimal purity of 85% with 

a N-terminal 6-Aminohexanoic Acid (Ahx) linker followed by the fluorescent dye 5-FAM. A C-terminal 

amidation served to mimic the lack of a free C-terminus in the amino-acid sequence when it is part of a 

larger protein. One of the top-scoring sequences was not tested due to failed synthesis by the 

commercial provider, and the next top-ranking sequence was picked instead. Peptide sequences are 

reported in Supp. Table S8.  

 

Fluorescence Anisotropy assay. To study the binding of the fluorescently labelled peptides to 14-3-3, 

Fluorescence Anisotropy (FA) assays were carried out23. In the case of binding, tumbling of the peptide 

with the attached fluorophore will slow down and the emitted light will be polarized. This will lead to a 

higher anisotropy.72 For all experiments, 14-3-3γ was used as it was shown in multiple experiments to 

be the strongest binding variant suitable for experimental screening.73 The FAM-labeled peptides and 

the 14-3-3γ FL protein were diluted in buffer (10 mM HEPES pH 7.4, 150 mM NaCl, 0.1% Tween20, 1 

mg/mL BSA).  

Dilution series of 14-3-3γ proteins (starting at 500 μM) were made to 10 nM of the FAM-labeled peptides 

in black, round-bottom 384-microwell (Corning) in a final sample volume of 10 μL. Fluorescence 

anisotropy values were measured using a Tecan Spark Control at room temperature (filter set lex: 485 

± 20 nm, lem: 535± 25 nm, mirror: Dichroic 510, flashes: 30, integration time: 40 µs, settle time: 1 µs; 

gain: optimized per peptide, and Z-position: calculated from well. Wells containing only FAM-peptide 

were used to set as G-factor. The KD values were obtained from fitting the data using Origin 2020 with 

a Sigmoid Hill1 function. Data shown is the average and standard deviation of triplicates.  

 

Co-Crystallization 
The 14-3-3σΔC protein and the acetylated client peptides were dissolved in complexation buffer (25 

mM HEPES pH=7.5, 2 mM MgCl2 and 100 μM TCEP) and mixed in a 1:2 or 1:4 molecular stoichiometry 
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(protein: peptide) with a final protein concentration of 12 mg/mL. The complex was set-up for sitting-

drop crystallization at 4 °C, in a custom crystallization liquor (0.05 M HEPES (pH 7.1, 7.3, 7.5, 7.7), 0.19 

M CaCl2, 24-29% PEG400, and 5% (v/v) glycerol). Crystals grew within 10-14 days at 4 °C. Crystals 

were fished and flash-cooled in liquid nitrogen. X-ray diffraction (XRD) data were collected at the 

European Synchrotron Radiation Facility (ESRF Grenoble, France, beamline ID23-2). Data was 

processed using CCP4i2 suite (version 8.0.019). After indexing and integrating the data, scaling was 

done using AIMLESS. The data was phased with MolRep, using PDB 3IQU as template. Model 

rebuilding and refinement was performed using REFMAC5. The PDB REDO server (pdb-redo.edu) was 

used to complete the model building and refinement. The images were created using the PyMOL 

Molecular Graphics System (Schrödinger LLC, version 4.6.0). See Supporting Table S9 for data 

collection and refinement statistics.  

Molecular Dynamics Simulations  
To investigate how our experimental results could be extended beyond the experimentally determined 

peptides, we selected three sequences: FOXO3 pS413 (1, Kd = 1.6 ± 0.1 μM), TAU pT245 (2, Kd = 8.5 

± 0.2 μM), and BAD pS118 (7, Kd>100 μM). For each of these sequences, we obtained an ‘extended’ 

sequence from the corresponding full-protein sequence from UniProt,49 by elongating the tested 

sequences with 20 amino acids in both N- and C-terminal directions (55 amino acids in total). Our goal 

was to assess whether the additional flanking residues could alter the binding properties of the peptide 

within the 14-3-3 binding pocket and hence infer the plausibility of the predicted binding sites. To this 

end, we performed molecular dynamics (MD) to compare the stability of both sequence versions, 

ultimately to assess how additional flanking residues influence stability and to gain insights into these 

PPIs. For each peptide, molecular dynamics (MD) simulations were performed using GROMACS 202374 

with three independent replicates. The simulations were divided into three stages: energy minimization, 

equilibration, and production. Energy minimization was performed using the steepest descent algorithm 

until a convergence criterion of 1000 kJ/mol/nm was reached. The equilibration phase was conducted 

under position-restrained dynamics in the NVT and NPT ensembles, using the V-rescale thermostat to 

maintain a temperature of 303.15 K and the Parrinello-Rahman barostat to regulate pressure at 1 atm. 

The production phase involved MD simulations for 300 ns with a 2-fs integration time step. The initial 

peptide structures were extended to a sequence of 55 amino acids using PyMOL.75  MD simulations 

were performed following a five-step protocol to ensure proper system relaxation and equilibration. The 

first step involved an energy minimization using steepest descent, applying positional restraints on the 

backbone (force constant = 400 kJ/mol/nm²) and side chains (force constant = 40 kJ/mol/nm²). The 

peptide was frozen along all spatial dimensions during this phase. In the second step, a 5 ns MD 

simulation was carried out under NVT conditions, with positional restraints on the backbone and side 

chains. A time step of 1 fs was used, and the system was maintained at 303.15 K using the V-rescale 

thermostat. The peptide remained frozen along all spatial dimensions. Following this, a second round 

of energy minimization was performed using the same parameters as in the first phase to allow for 

further relaxation of the solvent environment around the peptide. The fourth phase involved a 5 ns MD 

simulation under NPT conditions to equilibrate the system. Positional restraints were again applied to 

the peptide backbone and side chains. Pressure was controlled isotropically at 1 bar using the 

Parrinello-Rahman barostat, and temperature was held at 303.15 K using the V-rescale thermostat. 

Finally, in the fifth phase, a 300 ns production MD simulation was carried out with a 2-fs time step, 

during which positional restraints were removed, allowing the peptide to move freely. Temperature 

(303.15 K) and pressure (1 bar) were controlled using the V-rescale thermostat and Parrinello-Rahman 

barostat,76 respectively. For the analysis of the root mean square fluctuation (RMSF) of the peptides, 

the first 15 ns of the production phase were excluded from the calculation to allow for system 

equilibration. The RMSF values were then computed over the remaining trajectory, considering the 

fluctuations across all three replicates. 
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Software and code 
The Python code and the data to replicate and extend our study are available on GitHub at 

the following URL: https://github.com/molML/14-3-3-bindsite. To further apply our approach 

prospectively, the software can be used via a freely accessible webpage at the following URL: 

https://14-3-3-bindsite.streamlit.app/. 
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Supplementary Tables 
 
 
Supplementary Table S1. List of psycho-chemical properties computed per amino-acid, 
using peptidy.30 

1.     Aliphatic Index 7.     No. Carbon Atoms 13.  Molecular Weight 

2.     Aromaticity 8.     No. Hydrogen Atoms 14.  No.  Hydrogen Bond Donors 

3.     Charge 9.     No.  Nitrogen Atoms 15.  No. Hydrogen Bond Acceptors 

4.     Charge Density 10.  No. Oxygen Atoms 16.  Topological Polar Surface Area 

5.     Hydrophobic AA Ratio 11.  No. Sulfur Atoms 17.  Energy Based on LogP 

6.     Isoelectric Point 12.  No. Phosphor Atoms 18.  Average No. Rotatable Bonds 
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Supplementary Table S2. Machine learning performance evaluation on the test set. 

Classification metrics are reported as the mean and standard deviation across 10 training and 

test splits after hyperparameter tuning.  

Architecture Representation BA (%) Pr (%) Recall (%) Specificity (%) 

MLP Learnable 77±4 76±6 80±10 74±9 

CNN BLOSUM 73±5 71±5 80±7 66±8 

GRU BLOSUM 78±6 77±6 79±10 77±8 

Ensemble // 77±5 75±6 82±9 72±8 
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Supplementary Table S3. Intrinsic disorder ratio, as prediced by AlphaFold (and retrieved on 

MobiDB; https://mobidb.org, accessed February 2025) or experimentally determined 

(retrieved via DistProt; https://disprot.org/, accessed February 2025). UniProtID was used for 

retrieval 
 

  Protein UniProtID 
MobiDB 

(AlphaFold) 

DistProt 

(experimental) 

p53  Q761V2 0% n.a. 

CFTR   P13569 23.20% 12.50% 

Notch4   Q99466 25.50% n.a. 

Myc   P01106 69.60% 57.86% 

FOXO3   O43524 85.30% n.a. 

BAD   Q92934 85.70% n.a. 

Tau   P10636-8 95.10% n.a. 
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Supplementary Table S4. Known binding sites that were correctly predicted by our 

model. 

Protein Phospohosite Model Prediction Reference 

Tau 214 0.98±0.03 42 
 324 0.66±0.14 42 
 356 0.70±0.21 77  

BAD 74 0.77±0.18 78 
 75 0.96±0.05 79 (mice)  
 99 1.0±0.0 80 

FOXO3 32 0.88±0.14 80 
 253 0.99±0.01 81 

Notch-4 1865 0.89±0.10 40 

CFTR 737 0.70±0.19 82 
 768 0.88±0.09 82 

Myc 358 0.74±0.15 (truncated)42  

p53 366 0.85±0.14 42 
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Supplementary Table S5 Ranking of the ordered peptides according to our model and the 

model available on the 14-3-3 Site Finder. For the other models the output from 14-3-3 site 

finder was used. Correlation (r) is computed between our ranking and those of the other 

methods. *Rank out the 296 phosphorylated peptides based on the 7 proteins tested. 
*Out of 393 top 50% entries. For all models, the Uniprot ID input used to retrieve the full 
protein sequences is: P10636-8,P01106,O43524,Q99466,Q92934,P13569,Q761V2.  
*** Correlation with the ranking based on Kd values.  

Protein 
Phospho-

site 

This work* 

[rank, ID] 

PTM and 

disorderedness**83 

14-3-3 

Pred**26 

Adapted 14-3-3 

Pred score**83 
Kd (μM) 

FOXO 3 413 3 (1) 12 14 2 1.6 ± 0.1 

Tau 245 6 (2) 17 54 10 8.6 ± 0.8 

Notch 4 1847 10 (3) 37 21 23 70 ± 1 

Tau 198 11 (4) 40 174 98 71 ± 11 

CFTR 422 20 (5) 68 18 39 – 

BAD 134 21 (6) 13 73 14 15.9 ± 1.9 

BAD 118 23 (7) 32 78 19 > 100 

Myc 294 24 (8) 89 88 24 > 100 

Corr.  1.00 0.58 0.20 0.05 0.73*** 
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Supplementary Table S6. Hyperparameter space analyzed for the second round of 

hyper-parameter tuning each model (n.a. = not applicable). The search strategy (random 

or exhaustive) along with the number of tested hyperparameter combinations was 

reported. 

Hyperparameter MLP  CNN  GRU 

Activation ReLu ReLu ReLu 

No. (dense) layers 1, 2, 3 1, 2, 3, 4 1, 2 

No. of neurons per 

(dense) layer 

8, 20, 64, 128 16, 64, 256 32, 64, 128, 256 

Learning rate 1E-2, 1E-3, 

5E-3 

1E-2, 1E-3, 

5E-3 

1E-2, 1E-3, 

5E-3 

Batch size 32, 64, 128 32, 64, 128 32, 64, 256 

Dropout 0.0, 0.1, 0.25 0.0, 0.1, 0.25 0.0, 0.1, 0.25 

Epochs 200 200 200 

Loss BCE BCE BCE 

Embedding size 32, 64 32, 64 32, 64  

No. of 1D 

layers 

n.a. Other: 2, 3, 4 n.a. 

Kernel size of the 

1D layers 

n.a. 5, 7, 9  n.a. 

Number of filters n.a. 3, 5, 7 n.a. 

Search strategy Exhaustive 

(except embedding) 

Random Exhaustive  
(except embedding) 

No. HP combinations 324 1500 216 
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Supplementary Table S7. Selected model hyperparameters (n.a. = not applicable). 

 

 

 
 

 

 

 

 

 

 

 

 
  

Hyperparameter MLP CNN GRU 

No. dense layers 2 4 1 

No. neurons per dense layer 20 256 1 

Learning rate 0.001 0.01 0.001 

Batch size 128 64 128 

Dropout 0.0 0.25 0.25 

Epochs  18 37 25 

Loss BCE BCE BCE 

Batch normalization False True False 

Embedding size 32 n.a. n.a. 

No. 1D conv. layers n.a. 3 n.a. 

Kernel size of the 1D layers n.a. 5 n.a. 

Number of filters n.a. 5 n.a. 
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Supplementary Table S8. Ordered peptide sequences.  

FOXO pS413  5-FAM-Ahx-GLMQRSSpSFPYTTKG-CONH2 
Tau pT245  5-FAM-Ahx-SAKSRLQpTAPVPMPD-CONH2 
NOTCH4 pS1847  5-FAM-Ahx-FPRARTVpSVSVPPHG-CONH2 
Tau pS198  5-FAM-Ahx-SGDRSGYpSSPGSPGT-CONH2 
Myc pS294  5-FAM-Ahx-APGKRSEpSGSPSAGG-CONH2 
BAD pS134  5-FAM-Ahx-KGLPRPKpSAGTATQM-CONH2 
BAD pS118  5-FAM-Ahx-GRELRRMpSDEFVDSF-CONH2 
CFTR pS422  5-FAM-Ahx-NNNNRKTpSNGDDSLF-CONH2 
Tau pT111  5-FAM-Ahx-EEAGIGDpTPSLEDEA-CONH2 
Myc pT262  5-FAM-Ahx-LHEETPPpTTSSDSEE-CONH2 
CFTR T1019 5-FAM-Ahx-QPYIFVApTVPVIVAF-CONH2  (Synthesis failed)  
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Supplementary Table S9. XRD data collection and refinement statistics for 14-33σ/peptide 

structures. 

 

PDB 9QNG 9QNK 9QNI 
Protein 14-3-3C 14-3-3C 14-3-3C 

Peptide FOXO3 pS413 Tau pT245 NOTCH4 pS1847 

Beam ESRF ID23-2 ESRF ID23-2 ESRF ID23-2 

DOI 10.2210/pdb9qn
g/pdb 

10.2210/pdb9qnk/
pdb 

10.2210/pdb9qni/p
db 

Data collection       
     Wavelength (Å) 0.873128 0.873128 0.873128 

     Space group C 2 2 21 C 2 2 21 C 2 2 21 

     Cell dimensions 

       a, b, c (Å) 
       α, β, γ (°) 

  
82.1, 112.0, 63.1 

90, 90, 90  

  
82.9, 113.0, 63.2 

90, 90, 90 

  
83.1, 113.0, 63.3 

90, 90, 90 

     Resolution (Å) 63.07 – 1.35  
(1.37 – 1.35) 

45.92 – 1.6  
(1.63 – 1.6) 

66.93 – 1.8 

(1.84 - 1.8)  
     I / σ(I) 14.3 (1.0) 14.6 (2.4) 16.5 (2.8) 
     Completeness (%) 100.0 (100.0) 86.5 (100.0) 82.3 (100) 
     Redundancy 12.9 (12.7) 12.3 (12.0) 9.0 (9.6) 
     CC1/2 0.999 (0.394) 0.999 (0.777) 0.999 (0.805) 
        
 Refinement       
     No. reflections  63042 34167 23160 

     Rwork/Rfree 0.161/0.189 0.201/0.224 0.185/0.220 

     No. atoms 

       Protein 

       Ligand/ion 

       Water 

  
1992 

6 

252 

  
1959 

4 

184 

  
1913 

5 

122 

     B-factors 

       Protein 

       Ligand/ion 

       Water 

  
23.36 

34.04 

35.47 

  
22.54 

29.35 

34.68 

  
34.16 

44.49 

35.83 

     R.m.s. deviations 

       Bond lengths (Å) 
       Bond angles (°) 

  
0.012 

1.07 

  
0.016 

1.37 

  
0.011 

1.19 

     Ramachandran 

       favored (%) 
       outliers (%) 

  
98.74 

0.00 

  
98.30 

0.00 

  
97.85 

0.43 
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PDB 9QNJ 9QNL 9QNH 

Protein 14-3-3C 14-3-3C 14-3-3C 

Peptide Tau pS198 BAD pS118 Myc pS294 

Beam ESRF ID23-2 ESRF ID23-2 ESRF ID23-2 

 DOI 10.2210/pdb9qnj
/pdb 

10.2210/pdb9qnl/
pdb 

10.2210/pdb9qnh/p
db 

Data collection       
     Wavelength (Å) 0.873128 0.873128 0.873128 

     Space group C 2 2 21 C 2 2 21 C 2 2 21 

     Cell dimensions 

       a, b, c (Å) 
       α, β, γ (°) 

  
82.6, 112.4, 63.0 

90, 90, 90 

  
82.6, 112.1, 63.0 

90, 90, 90 

  
82.9, 112.7, 63.0 

90, 90, 90 

     Resolution (Å) 66.57 – 1.3  
(1.32 – 1.3) 

45.72 – 1.3  
(1.33 – 1.3)  

66.76 – 1.3  
(1.33 – 1.3) 

     I / σ(I) 24.7 (2.7) 19.4 (1.5) 31.2 (5.4) 
     Completeness (%) 100 (100) 89.1 (97.9) 88.3 (98.1) 
     Redundancy 13.0 (12.8) 13.0 (12.5) 13.5 (13.1) 
     CC1/2 1.000 (0.848) 1.000 (0.589) 1.000 (0.948) 
        
 Refinement       
     No. reflections  72103 62166 63470 

     Rwork/Rfree 0.163/0.183 0.170/0.202 0.189/0.209 

     No. atoms 

       Protein 

       Ligand/ion 

       Water 

  
1996 

8 

262 

  
2007 

6 

238 

  
1991 

8 

280 

     B-factors 

       Protein 

       Ligand/ion 

       Water 

  
20.48 

48.06 

34.19 

  
25.25 

38.83 

35.68 

  
19.23 

31.73 

32.02 

     R.m.s. deviations 

       Bond lengths (Å) 
       Bond angles (°) 

  
0.018 

1.43 

  
0.009 

1.03 

  
0.009 

0.99 

     Ramachandran 

       favored (%) 
       outliers (%) 

  
98.29 

0.00 

  
98.32 

0.00 

  
98.72 

0.00 
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Supplementary Figures 
  

 

Type Training set In-house 

All 

  

Binders 

 

 

Non-
binders 

 

 

Supplementary Figure S1. LogoPlots of the sequences in literature dataset used to train and 

validate the models, divided by their binding label. 
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Supplementary Figure 2. Experimental validation. Eight putative binding sites (1-8) and two negative controls 

(9-10) were selected for experimental validation via fluorescence anisotropy (FA) assays. Dose-response curves 

are reported for each sequence, labeled as protein and phosphosite (pS = phosphoserine, pT = phosphothreonine), 

across three independent repeats. 
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Supplementary Figure S3. Titration of 14-3-3y to fluorescently labeled peptides Tau pS198 and 

pT245, and two known Tau binding sites,Tau pS214 and pS324 (10 nM). Data and KD values are 

shown as mean ± SD (n=3).  
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Supplementary Figure S5. Interactions of predicted peptide sequences (a) FOXO3 pS413 (orange), 

(b) Tau pT245 (cyan), (c) NOTCH pS1847 (purple), (d) Tau pS198 (pink), (e) BAD pS118 (green), (f) 

Myc pS294 (blue)) with 14-3-3sigma (white surface) (relevant side chains and waters are displayed as 

stick and red dots, respectively, polar contacts are shown as black dashed lines).  
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Supplementary Figure S6. Structural insights into binding to 14-3-3. Molecular dynamics analysis to determine 

the stability of putative binding sites, by comparing three tested peptides (FOXO3-413, TAU-245 and BAD-118) 

with an extended version along the respective protein sequence (55 AAs). (a) Root mean squared fluctuation 

(RMSF [Å] – the lower, the more stable) values obtained for the selected peptides and the extended AA sequence. 

RMSF is reported per residue. (b) Structural overlay of the TAU245 peptide and its extended form into the 14-3-3 

binding site after molecular dynamics simulation. (c) The binding poses of TAU245 at the interface with 14-3-3 are 

conserved among the 15 AAs and the 55 AAs versions throughout the MD simulations. 
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