Sustainable Fuels from CO₂-rich synthesis gas via

² Fischer-Tropsch technology

- 3 Bart C.A. de Jong¹, Konstantijn T. Rommens², Tal Rosner³, Paul van den Tempel⁴, Léon
- 4 Rohrbach¹, G. Leendert Bezemer⁵, Hero J. Heeres¹, Mark Saeys², Charlotte Vogt⁶ and Jingxiu
- 5 $Xie^{l,*}$
- 6 ¹ Green Chemical Reaction Engineering, Engineering & Technology Institute Groningen,
- 7 University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
- 8 ² Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical
- 9 Engineering, Ghent University, Technologiepark 125, 9052, Ghent, Belgium
- 10 ³ Schulich Faculty of Chemistry, and Russel Berri Nanoscience and Nanotechnology Institute,
- 11 Technion Israel Institute of Technology, Technion City, Haifa 32000, Israel
- ⁴ Product Technology, Engineering & Technology Institute Groningen, University of Groningen,
- Nijenborgh 3, 9747 AG Groningen, The Netherlands
- ⁵ Energy Transition Campus Amsterdam, Shell Global Solutions International B.V., Grasweg 31,
- 15 1031 HW Amsterdam, The Netherlands
- ⁶ Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion -
- 17 Israel Institute of Technology, Technion City, Haifa 32000, Israel

19	KEYWORDS
19	VE I MOVDS

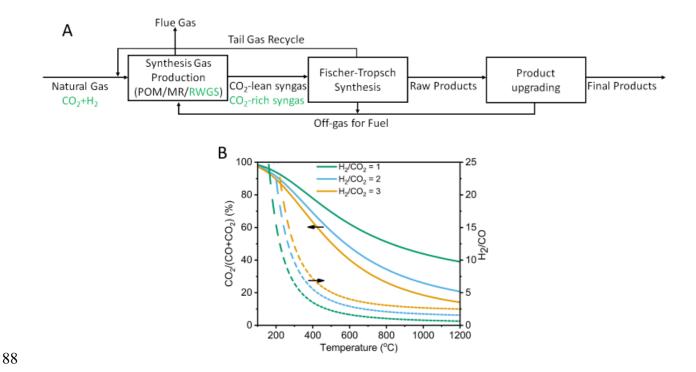
20 Carbon dioxide, Synthesis gas, Mixed feeds, Synthetic fuels, Fischer-Tropsch, Methanation,

21 Cobalt

22 ABSTRACT

CO₂-containing synthesis gas is a relevant feedstock for the production of synthetic fuels using Fischer-Tropsch Synthesis. We report the role of CO₂ in CO₂, CO and H₂ mixed feeds over a cobalt-based catalyst at 220 °C and 21 bar in a packed bed reactor. The C₅₊ selectivity remains above 78 % even for CO₂-rich synthesis gas with 75 % CO₂/(CO+CO₂). Using ¹³CO₂ isotopic labeling, the increase in methane selectivity is attributed to both CO and CO₂ methanation, which is limited by maintaining a H₂/CO outlet ratio below 10 and an outlet CO partial pressure above 0.2 bar, respectively. Operando modulated DRIFTS confirms a positive relationship between CO surface coverage and CO partial pressure. From DFT and microkinetic modeling, enhanced CO and CO₂ methanation could be attributed to a lower CO surface coverage and a higher H₂ surface coverage. This work identifies boundaries for efficient cobalt-catalyzed mixed-feed FTS for synthetic fuels production.

1. Introduction


41

The aviation sector currently accounts for 2.4 % of global CO₂ emissions, a share likely to 42 increase as aviation fuel cannot effectively be replaced in the near future with H₂ or batteries ¹⁻³. 43 44 To reduce the climate impact of the aviation sector, sustainable aviation fuel (SAF) is produced 45 from renewable H₂ and alternative carbon feedstocks, such as municipal waste, biomass, and 46 CO/CO₂-containing waste gas streams, via Fischer-Tropsch Synthesis (FTS) ^{1,4}. FTS converts 47 synthesis gas (syngas), a mixture of CO and H₂, into a range of hydrocarbons ⁵⁻⁷. These hydrocarbons can be converted into SAF, which has superior combustion properties compared to 48 conventional aviation fuels ⁸. Figure 1a presents the general process flowsheet for producing 49 synthetic kerosene via the Gas-to-Liquids (GTL) and the Power-to-Liquids (PTL) technology. 9-50 51 ¹². In the GTL technology, synthesis gas is produced from natural gas via partial oxidation of 52 methane (POM) or methane reforming (MR) and converted into hydrocarbons via FTS (Figure 1a) ¹³. The hydrocarbon products are then isomerized, hydrocracked and upgraded into SAF. In the 53 PTL route, CO₂ and green H₂ are used for the SAF production (Figure 1a) ^{14,15}. The synthesis gas 54 55 production proceeds via the reverse water gas shift (RWGS) reaction, followed by the same steps 56 as GTL. 57 To evaluate syngas production via RWGS, its equilibrium between CO and CO₂ versus temperature is presented in Figure 1b. Higher temperatures favor this endothermic reaction. A 58 59 higher H₂/CO₂ feed ratio increases equilibrium conversion but also raises the output H₂/CO ratio. 60 In the industrially relevant temperature range of 600 to 800 °C, the RWGS unit outlet has a CO₂ 61 fraction (fraction CO₂/(CO+CO₂)) of 20-50 % CO₂. In alternative feeds such as CO-rich emission gas from the steel and cement industries, CO₂ is also present in significant amounts ¹⁶. Therefore, 62 63 either a CO₂ scrubber is required, or CO₂ needs to be tolerated in the FTS unit. CO₂ could

for enhanced heat transfer and dilution of the partial pressure of water that is formed ^{17–19}. 65 FTS is catalyzed by iron or cobalt-based catalysts ^{5,6}. As metallic cobalt-based catalysts are 66 inactive for RWGS and operate at lower temperatures, they produce mainly paraffinic C₅₊-67 hydrocarbons which is ideal for synthetic kerosene 8,20. FTS with a pure CO and H₂ feed has 68 69 extensively been researched, and also the methanation activity for CO₂ hydrogenation over cobaltbased catalysts is well established ^{5,6,21,22}. However, there are dissenting opinions on the role of 70 71 CO₂ in mixed-feed streams where some groups mentioned that CO₂ acts as inert gas, while other groups reported conversion of CO₂ into methane ^{23–34}. Riedel et al. studied mixed-feed FTS at 190 72 73 °C and 10 bar using a Co/Mn/Aerosil/Pt catalyst and found that CO₂ acts as diluent until CO₂ fraction was above 75 %, when CO₂ methanation commenced ²⁷. Yao et al. used a Co/TiO₂ catalyst 74 75 at 200 °C and 21 bar and found that for CO₂ fractions above 50 %, CO₂ was converted to methane ²⁸. Using isotopic labelled ¹⁴CO₂ in a mixed-feed at 220 °C and 20 bar over a Co/Pt/Al₂O₃ catalyst, 76 the Davis group concluded that CO₂ methanation occurred even at CO₂ fractions below 50 % ²⁹. 77 78 In this study, we define the process boundary conditions where CO₂ switches from an inert to a 79 reactive gas in FTS using an industrially relevant titania-supported metallic cobalt catalyst loaded 80 in a packed-bed reactor operating at 220 °C and 21 bar. These boundaries allow for operation of 81 mixed-feed FTS where CO₂ and H₂ are not converted in undesired methane. We hypothesize that 82 the conversion level, H₂/CO ratios, and H₂ partial pressure should all be well-defined to establish clear experimental boundary conditions ^{23–34}. To align the H₂/CO_x ratio of the RWGS effluent with 83 the FTS feed, the H₂/CO_x ratio was fixed at 2 ³⁵. Upon identifying boundary conditions where CO₂ 84 85 co-feeding increased methane selectivity and descriptors thereof, in-situ DRIFTS, isotopic

potentially replace other inert gases that have been proposed to be added to improve the process

labelling experiments, and microkinetic modeling were employed to unravel the molecular origin of increased methane production and limited CO₂ reactivity.

Figure 1. Process considerations for synthetic fuels production. a, A block scheme for gas to fuel production from methane (black) or a sustainable feed such as CO₂ emissions and renewable H₂ (green). Apart from the syngas production technology and composition, the processes are similar. **b,** Equilibrium composition in terms of CO₂ fraction (CO₂/(CO+CO₂)) and syngas ratio (H₂/CO) for the RWGS versus temperature at 21 bar.

2. Methods

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Catalyst preparation. A Co/TiO₂ catalyst was prepared by incipient wetness impregnation as reported previously ⁴⁵. Cobalt nitrate hexahydrate (>99.0 %, <0.001 % Ni) and titanium dioxide nanopowder (>99.5 %, formally known as P25) from Merck were used. TiO2 was pressed and sieved to a 75-150 µm fraction. To achieve a theoretical 6 % wt. Co loading, 0.32 g Co(NO₃)₂*6H₂O was dissolved in 0.11 mL milliQ water and impregnated on 1 g of sieved TiO₂ (pore volume 0.23 cm³ g⁻¹). The impregnated TiO₂ was dried at 90 °C for 24 hours and subsequently pyrolyzed in a tubular oven under a flow of N₂ at 80 °C for two hours and followed by 250 °C for two hours with a ramping rate of 2 °C min⁻¹. The resulting material was sieved again to obtain a 75-150 μ m catalyst. Catalyst characterization. Different batches of Co/TiO₂ were used in this work, and the properties were checked to be consistent. To determine the elemental composition, X-ray fluorescence (XRF) analysis was performed with a Malvern PANalytical Epsilon3^{XLE} spectrometer. XRF determines the amount of Co₃O₄ based on fundamental parameters which is corrected to yield the cobalt loading. The metal loading was determined after calcination of the catalyst at 500 °C to ensure all cobalt to be oxidized and precursor groups to be removed. The elemental composition was further examined using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) on a Perkin Elmer Optima 7000 DV. The transmission electron microscopy (TEM) images were made with a 200 kV Tecnai T20 electron microscope. The catalyst was dispersed in ethanol and placed on a carbon coated Cu grid. Elemental distribution was done in STEM mode on a SDD EDX detector (XmaxT80, Oxford instruments). X-ray diffraction (XRD) patterns were obtained on a Bruker Advance D8 diffractometer at 40 kV and 40 mA using Cu-Ka radiation ($\lambda = 1.5544$ Å). The 20 angle was varied from 3° to 90° with a step size of 0.02 and a scan time of 0.9 s. Nitrogen physisorption was measured with a Micromeretics ASAP 2420. The total surface area was determined by the Brunauer-Emmett-Teller (BET) method. Temperature Programmed Reduction/Desorption experiments (TPR/TPD) were executed on a Micromeretics AutoChem II 2920 equipped with a thermal conductivity detector (TCD). For the TPR experiments, a flow of 5 % H₂ in Ar was put over the catalyst (3000 mL g_{cat}⁻¹ h⁻¹) and the temperature was ramped from 50-650 °C with a ramping of 1 °C min⁻¹. For CO and CO₂ TPD, the catalyst was reduced in situ at 350 °C for 8 hours with a ramping of 5 °C min⁻¹ corresponding to the pretreatment isupportin the reactor. After this, the sample was cooled down to 50 °C under helium. The sample was put under a flow of 5 % CO in He for 1 hour for the CO TPD or 10 % CO₂ in He for the CO₂ TPD and ramped to 650 °C with 5-10 °C min⁻¹. The H₂-chemisorption was performed on a Micromeritics ChemiSorb HTP. The catalyst was reduced in situ (GHSV of 4800 and 24000 mL g_{cat}⁻¹ h⁻¹) at 350 °C for 8 hours with a ramping of 5 °C min⁻¹ after that the chemisorption was measured at a temperature of 150 °C with a ramping of 3 °C min⁻¹. The particle size is corrected for degree of reduction and based on hemispherical particles. TPR-MS was performed with an in-house developed reactor with a ramp of 5 °C min⁻¹ while scanning for the masses 14-18, 28, 30, 32, 46, 62 and 63 u corresponding to the mass of hypothetical decomposition products. Catalytic evaluation. The catalytic tests were performed in a stainless-steel reactor tube (inner diameter of 6 or 9 mm) in a MICROACTIVITY-Effi from PIDEngTech. Ar (99.999 %), H₂ (99.999 %), CO₂ (99.999 %) and CO (99 %) were fed to the setup by mass flow controllers from Bronkhorst. The catalyst mass was diluted 5 times with silicon carbide (50-75 μ m) to ensure isothermal operation ⁵⁵. Plug flow was ensured by keeping the diameter of the particles at least 10 times smaller than the diameter of the reactor and the length of the bed was at least 50 times the

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

141 diameter of the particle ⁵⁵. The Weisz-Prater criterion, given in Supporting Information, was used 142 to confirm the absence of internal mass transfer limitations. Reduction of the catalyst (0.1-1.0 g) was performed under a flow of 20 mL min⁻¹ of 25 % v. H₂ 143 144 in Ar at 350 °C at 2 bar with a heating ramp of 1 °C min⁻¹ for 8 hours. After reduction, the reactor 145 was cooled to 220 °C (1 °C min⁻¹) and the pressure was increased to 21 bar (5 bar min⁻¹) for the 146 FTS experiments. During the reaction, the flows of Ar, H₂, CO and CO₂ were varied. To enable a 147 good comparison, the ratio H₂/CO_x was kept at 2/1, and the flow of Ar was equal to the flow of 148 CO+CO₂. This means that for any GHSV, the CO+CO₂ content was 25 % v., the Ar content was 149 25 % v. and the H₂ content was 50 % v. The only exception is the experiments where CO₂ was 150 replaced with Ar. All catalyst evaluation data were collected at steady state for at least 4 hours per 151 reaction condition. A representative run program is included Figure S1. The program steps were 152 generally repeated in reverse to check for stability and reproducibility as depicted in Figure S2. 153 The reactor unit was equipped with an online gas chromatographer for the analysis of the product 154 stream. A Thermo TraceGC 1310, equipped with a ShinCarbon ST and Hayesep Q column and a 155 thermal conductivity detector was used for the analysis of the permanent gases and a GS-gaspro 156 and Stabilwax column both equipped with flame ionization detector were used for the C₁-C₁₀ 157 fraction The chain growth probability was determined from the C₃-C₈ product fraction as heavier 158 hydrocarbons partly start to be condensed out in the cold trap (70 °C, 1 bar). 159 The conversion of CO and CO₂ were determined by equation 1 and 2 respectively. The C₅₊-160 selectivity was calculated using equation 3. The produced gasses were corrected for volume 161 changes by the internal standard Ar. The value for chain growth probability constant (α) , governed 162 by the Anderson-Schulz-Flory distribution model, was obtained by determining the slope of 163 $Ln(W_n/n)$ versus n for C_3 - C_8 and calculating the exponential (equation 4).

$$X_{CO} = \frac{[CO]_{in} - \frac{[Ar]_{in}}{[Ar]_{out}} * [CO]_{out}}{[CO]_{in}}$$
(1)

$$X_{CO_2} = \frac{[CO_2]_{in} - \frac{[Ar]_{in}}{[Ar]_{out}} * [CO_2]_{out}}{[CO_2]_{in}}$$
(2)

166
$$[C_{5+}](\%) = 100 \% - \frac{\frac{[Ar]_{in}}{[Ar]_{out}} [C_{1-4}]}{[CO]_{in} - \frac{[Ar]_{in}}{[Ar]_{out}} * [CO]_{out} + [CO_2]_{in} - \frac{[Ar]_{in}}{[Ar]_{out}} * [CO_2]_{out}}$$
(3)

$$\frac{W_n}{n} = (1 - \alpha)^2 \alpha^{n-1}$$
 (4)

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Isotopic labeling ¹³CO₂ experiments at steady state. A 99.0 atom % ¹³C labelled CO₂ gas cylinder of 0.42 L from Merck was pressurized with unlabeled CO₂ (99.999 %) to 25 bar. The mixture of labeled CO₂ was mounted to the Effi-setup and the setup gas lines were flushed. A catalytic evaluation was performed at 220 °C and 2 bar with pretreatment as described above. The experiments were conducted with a feed with a CO₂ fraction of 50 % and 90 % at 220 °C with a GHSV from 300 to 3400 mL g_{cat}⁻¹ h⁻¹. To obtain data on full CO conversion, the temperature was increased to 260 °C. To detect and quantify the isotopic species, Tedlar gas bags were filled with the gas mixture and evaluated on an Agilent 6890 GC-MS equipped with a GASPRO column using a gas tight syringe. The ¹³CH₄ and ¹²CH₄ counts were determined from the ¹⁷counts and ¹⁶counts from which the water contribution was subtracted based on the water ratio from NIST database. In-situ diffuse reflectance infrared Fourier transform spectroscopy. In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was employed to study formation of intermediates during the reaction. The reaction was carried out using a Nicolet iS10 FTIR spectrometer with a MCT detector and a custom-made Harrick Low Dead Volume High Temperature Reaction Chamber DRIFTS reactor and temperature controller (Figure S3). Spectra were recorded in series roughly every 22 s. The sample was first reduced *in-situ* in the DRIFTS cell while heating from room temperature to 350 °C at 1 °C/min with a flow of 5 ml/min H₂ and 15 ml/min Ar. Once 350 °C was reached, the temperature was held under the same flow for another 2 h. Subsequently, the sample temperature was decreased to 220 °C with a 1 °C/min ramp rate in 20 ml/min Ar. The gas flow was then changed to 90/10 Low (per the flows listed in Table 1), and the pressure was ramped to 3 bar using a Bronkhorst EL-PRESS back pressure regulator. The experiments commenced after a stable pressure of 3 bar was reached. After ~1 h, the gas composition was switched to 90/10 Full. Another ~1 hour was maintained at this condition before switching to the following condition. Each condition was maintained for at least 60 min while recording spectra. In the latter part of the experiment, the reaction conditions were repeated in reverse to assess whether the sequence had an impact on the observed mechanism. The full spectra are depicted in Figure S4.

Table 1. Flow rates (ml min⁻¹) of different reaction conditions.

	H ₂	Ar	CO	CO ₂	CO inlet (%)	H ₂ /CO
90/10 Low	30.25	15.13	1.51	13.61	2.5	20
90/10 Full	13.75	6.88	0.69	6.19	2.5	20
50/50 Low	11.92	5.96	2.98	2.98	12.5	4
50/50 Full	1.83	0.92	0.46	0.46	12.5	4

Thermodynamic calculations. All thermodynamic calculations were performed with Aspen Plus. For the RWGS equilibrium, an equilibrium reactor was modelled, and the compositions were calculated with the Peng-Robinson equations of state. A sensitivity analysis was performed to plot the effect of temperature, pressure and feed ratios on the product distribution of the RWGS. As methane formation in the RWGS should be suppressed in the syngas production, methanation was

not included in the thermodynamic calculations and hence there was no effect of pressure on the equilibrium composition.

Kinetic modeling. For determining the kinetic constant of the Fischer Tropsch reaction, MATLAB was used to fit two data sets in one routine. The rate orders were used as obtained in the work of Zennaro as -0.24 and 0.74 for α and β respectively ⁵². The fitting was carried out using the Isquonlin routine, where the mass balance (equation 5) including the change in density (equation 6) was solved using the built-in ode45 MATLAB function. For ε a value of -0.25 is taken which corresponds to the change in gas density for the production of butene. Subsequently the resulting kinetic constant, combined with the rate orders were taken as input to plot the integral conversion as a function of catalyst weight and the CO molar feed rate, taking into account the feed ratios as employed for the individual experiment. In addition, an error landscape was constructed by varying the input of α and β to gain insights in fit quality and provide other options for α and β in this dataset.

$$\frac{dF_{CO}}{dW} = R_{CO}' = -k_1 C_{CO}^{\alpha} C_{H2}^{\beta}$$
 (5)

$$\phi_{v} = \phi_{v0} * (1 + \epsilon X_{CO}) \tag{6}$$

DFT calculations and microkinetic model. Periodic spin–polarized DFT calculations were conducted using the vdW–DF functional, a plane–wave basis set with a cut–off kinetic energy of 450 eV, and the projector–augmented wave method as implemented in the Vienna Ab–initio Simulation Package (VASP) ^{56–60}. The construction of the cobalt terrace sites and B5 step sites are described in an earlier publication, including the microkinetic model construction ⁵³. Microkinetic simulations, using a mean-field approach, were performed using the Chemkin® software ⁶¹. An isothermal 1D plug flow reactor model was used in the simulations to calculate reaction rates, surface coverages and concentration profiles along the reactor. We used a CO_x inlet flowrate of

290 mmolcox h⁻¹ and an active site density of 300 mmolactive sites kg_{cat}⁻¹. The equations were solved up to the specified conversion ($X_{CO} = 10 \%$), to stay in low-conversion kinetic limit, by varying the amount of catalyst. Chemkin® solves the ordinary microkinetic differential equations using a modified DASPK solver with a relative tolerance of 10⁻⁶ and an absolute tolerance of 10⁻⁹ to obtain convergence⁶². An example of the input files for the high coverage simulations is provided in the Zenodo repository ⁶³. For the initial coverage, θ * and θ # were set to 1. Selectivities and average TOFs were calculated after 10 % conversion using molar outlet flow rates. Surface coverages are reported at 10 % conversion. CO₂-FT microkinetic model. For the microkinetic simulations at CO saturation coverage, the model developed in the Saeys group was used, which is publicly available in the Zenodo repository and described in a prior publication ^{53,63}. Some minor adjustments were made to the model to accommodate CO₂ hydrogenation (Table S1). The experimental reaction energy of the reverse water-gas shift is 28.5 kJ/mol ⁶⁴. The DFT vdW-DF value is 55.1 kJ/mol. Therefore, the CO₂ gas phase energy was corrected by +26.6 kJ/mol, as has become standard in microkinetic DFT simulations ^{65–68}. In the original FT model, H₂ only adsorbs non-competitively with CO* (H CO*), i.e., it adsorbs in a unit cell containing 7 CO*'s. This was implemented because CO* adsorption is significantly more exergonic than H* adsorption at FT conditions. When the CO partial pressure decreases and the H₂/CO ratio increases, H₂ adsorption however becomes competitive with CO adsorption. Therefore, an additional H* intermediate was added that adsorbs competitively with CO* (H*) in a unit cell with 6 CO*'s. This was implemented by including fast diffusion of H* surrounded by 7 CO*'s (non-competitive H*) to a unit cell with only 6 CO*'s (competitive H*). Lastly, CO₂ activation on the CO- and C-saturated B5 site was not described in the original model. Using a BEP relation with α =0.5 the activation energy for $CO_2^{\#} + * \rightarrow CO^{\#} + O^{*}$ was determined.

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

Since CO₂ adsorption on the CO- and C-saturated B₅ site is strongly endothermic (92 kJ/mol), the reaction was modelled as a dissociative adsorption. The high activation barrier (128 kJ/mol) and strong endothermicity of CO₂ adsorption suggest that this route is not viable, no matter the exact energy of the transition state, making the BEP estimate activation energy a sufficient approximation.

3. Results and discussion

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

Catalyst. Co/TiO₂ is a relevant FTS catalyst and has been extensively investigated ^{36–43}. A Co/TiO₂ catalyst was prepared by incipient wetness impregnation and characterized using XRF, ICP, TEM, XRD, N₂-physisorption, H₂-chemisorption and TPD/TPR. Table 2 provides a summary of relevant catalyst properties. The cobalt elemental loadings determined by XRF and ICP were similar at ~5 % wt. (Table 2). XRD and TEM (Figure S5 and S6) of the fresh catalyst suggest a homogenous dispersion of cobalt as no large cobalt oxide nanoparticles were observed ^{36,37,39,40,44,45}. Chemisorption (Table 2) of the reduced catalyst and STEM-EDX (Figure S6) of the spent catalyst identified cobalt nanoparticles with an average particle size of 30 nm. This suggests the stability of cobalt nanoparticles during reaction and, importantly, demonstrates that the catalyst is independent of the 'particle size effect' which is prominent for cobalt nanoparticles less than 6 nm ^{5,46}. TPR (Figure S7) showed peak maxima of CoO reduction at 350 and 380 °C, respectively, for 1 and 5 °C/min heating rate. H₂-chemisorption showed a degree of reduction of 90 % after 150 minutes at 350°C. This required reduction temperature agrees with literature ^{36,37,43–45, 47}. Thus, to ascertain cobalt reduction before catalytic experiments, reduction was performed at 350 °C and extended for 8 hours.

Table 2. Catalyst properties determined using XRF, ICP, H₂ chemisorption and N₂ physisorption.

	Co/TiO ₂
Cobalt wt. loading (from ICP, %)	4.8 ± 0.5
Cobalt wt. loading (from XRF, %)	4.9 ± 0.1
Chemisorption average particle size (hemisphere) (nm)	31 ± 3
Chemisorption degree of reduction (%)	90 ± 2
BET surface area (m ² g ⁻¹)	52 ± 3
BJH pore size (nm)	30 ± 3

CO₂-containing synthesis gas. The catalytic performance for hydrogenation of CO, CO₂ and mixed-feeds is shown in Figure 2a while the stability and the complete product spectrum are shown in Figure S8. With a feed of $H_2/CO_2 = 2/1$ (CO₂ FTS), 96 % methane selectivity and no CO and C₅₊ hydrocarbons were observed at 6 % CO₂ conversion. With a feed of $H_2/CO=2/1$ (CO FTS), 83 % C₅₊-selectivity was achieved at 10 % CO conversion. The mixed CO/CO₂ FTS feed ($H_2/CO_2/CO=4/1/1$) showed a C₅₊-selectivity of 80 % at 31 % CO conversion but no CO₂ conversion was observed. In comparison to CO FTS, the increase in CO conversion with the mixed-feed is attributed to both higher CO residence time and $H_2/CO=4$. The 3 % decrease in C₅₊-selectivity corresponded to a 3 % increase in methane selectivity (Figure S8) and a slightly lower chain growth probability, α (Figure S9). These differences in product selectivity could be due to CO conversion, H_2/CO ratio, CO methanation and/and CO₂ methanation, i.e. the Sabatier reaction and in the following, we will discriminate between these different explanations. Notably, this is the highest C₅₊-selectivity reported for mixed CO/CO₂ FTS feeds with a CO₂ fraction up to 50 % $^{23-}$

Figure 2b shows the hydrocarbon selectivity versus conversion for a feed with 50 % CO₂ fraction. The hydrocarbon selectivity remained stable between 20 and 80 % CO conversion. An identical α of 0.86 was attained (Figure S10). No CO₂ conversion was observed. This rules out CO conversion as the origin of the higher methane selectivity in CO/CO₂-FTS compared to CO FTS. To investigate the influence of CO₂ fraction in mixed-feed FTS on product selectivity, the CO₂ fraction was varied from 0 to 100 %, while the H₂/CO_x ratio and CO conversion were kept at 2 and 10 to 30 %, respectively (Figure 2c). C₅₊-selectivity remained stable between 78 and 85 % when the CO₂ concentration was varied between 0 up to even 75 %. A decrease in liquid selectivity occurred only at CO₂ fractions of 90 and 100 %, and was mostly the result of increased methane selectivity from 23 to 96 % with only a small contribution (< 5 %) of the C₂-C₄ fraction. From Figure 2d, this decrease in C₅₊-selectivity appears to correlate with the decreasing outlet partial pressure of CO, and an increase in H₂/CO ratio. Thus far we demonstrated that the co-feeding of CO₂ with syngas was possible with high C₅₊selectivity of 78 to 85 % within the set boundaries of feed with a CO₂ fraction below 75 % at 10 to 30 % CO conversion (referred as Case 1: FTS). C₅₊-selectivity decreased from 78 to 54 % when the fed CO₂ fraction increased from 75 to 90 %. Interestingly, α remained between 0.82 and 0.85 (Figure S11), suggesting negligible change in chain growth probability. Instead, this decrease in C₅₊-selectivity corresponded to an increase in methane selectivity, which is formed from CO or/and CO₂. From Figure S12, an increase in H₂/CO outlet ratio for a feed with 50 % CO₂ fraction corresponded to a decrease in C₅₊-selectivity and an increase in methane selectivity. α stayed stable at 0.84 ± 0.01 (Figure S13). Hence, when the H₂/CO outlet ratio is significantly higher than 10, the increase in methane selectivity is attributed to CO methanation (referred as Case 2: CO methanation). CO and CO₂ are proposed to adsorb on the same Co sites, with CO adsorption being

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

more favorable, we postulate that sufficient CO prevents CO₂ adsorption and reaction ³⁰. Hence, CO₂ methanation occurs only when CO partial pressure is low. For a feed with 90 % CO₂ fraction, methane selectivity increased when CO conversion was above 70 % (Figure S14). At 93% conversion, chain growth probability dropped to 0.73 (Figure S15), indicating CO₂ methanation (referred as Case 3: CO₂ methanation). At 70 % CO conversion, about 0.2 bar (0.75 v%) of CO is present in the outlet. This indicates that a partial pressure of CO of 0.2 bar should be present to avoid Case 3: CO₂ methanation. The CO partial pressure in the effluent stream depends both on CO partial pressure in the inlet, and on CO conversion. Hence, a plot of C5+-selectivity and the effluent partial pressure of CO in the experiments with different CO levels is included in Figure S16. For efficient mixed-feed FTS, methane production must be minimized, so Case 1 operation is ideal. Figure 2e illustrates the three cases, where CO conversion is varied for the fed CO₂ fraction of 50 %. The H₂/CO outlet ratio remained below 10 for all conversions except at 80 %. The CO outlet partial pressure remained above 0.2 bar for all conversions. Therefore, the system operates in the FTS regime (Case 1) until 80 % CO conversion, where CO methanation (Case 2) becomes a risk. Figure 2f illustrates the three cases, where CO conversion is varied for the fed CO₂ fraction of 90 %. The H₂/CO outlet ratio is above 10 throughout the conversion range, so the system is always operated with increased CO methanation (Case 2). This explains the higher methane selectivity compared to the 50 % CO₂ fraction in Figure 2e. Above 90 % CO conversion, the CO outlet pressure drops below 0.2 bar, shifting the system to Case 3 where CO₂ methanation likely occurs. This explains the increase in methane selectivity from CO conversion of 90 % onwards to ultimately 80 %, which indicates that aside from CO methanation, CO₂ methanation is likely taking place. The boundary process conditions for Case 1, 2 and 3 are given in Table 3.

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

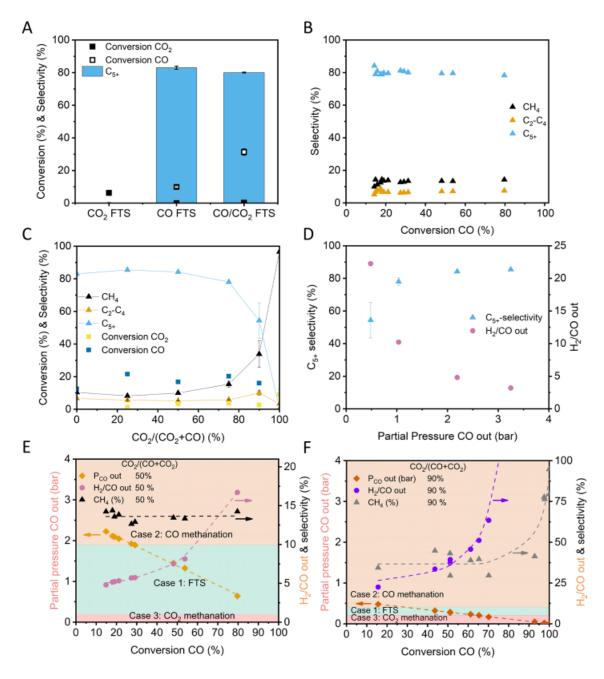
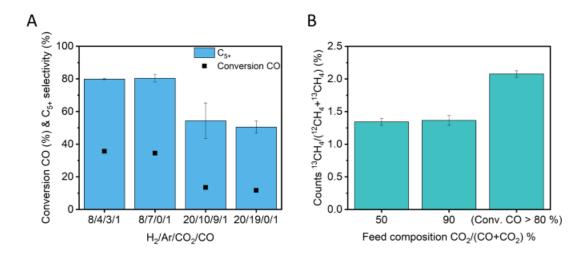


Figure 2. CO₂ co-feeding with synthesis gas over Co/TiO₂ at 220 °C and 21 bar. a, CO₂ FTS with H₂/Ar/CO₂=2/1/1, CO FTS with H₂/Ar/CO₂=2/1/1 and mixed CO/CO₂ FTS with H₂/Ar/CO₂/CO=4/2/1/1 at ~4000 mL g_{cat} h⁻¹. b, Selectivity as a function of CO conversion (by GHSV variation) for a feed with CO₂ fraction of 50 % (H₂/Ar/CO₂/CO=4/2/1/1,). c, Effect of CO₂ fraction in mixed-feed FTS at H₂/CO_x=2 and 10 to 30 % CO conversion. d, Relationship between partial pressure and H₂/CO feed ratio on C₅₊-selectivity at 10 to 30 % CO conversion. e, Effect of


conversion on outlet CO partial pressure, outlet H₂/CO ratio and methane selectivity for the feed with a 50 % CO₂ fraction. Regimes 1,2 and 3 (FTS, CO methanation and CO₂ methanation) are visualized in green, orange and red. Dashed lines are added to clarify trends. **f**, Effect of conversion on outlet CO partial pressure, outlet H₂/CO ratio and methane selectivity for the feed with a 90 % CO₂ fraction. Regimes 1,2 and 3 (FTS, CO methanation and CO₂ methanation) are visualized in green, orange and red. Dashed lines are added to clarify trends.

This finding that the main contributor to lower C₅₊ selectivity in mixed-feed FTS originates from extra production of methane, is in line with earlier reports ^{25,27,28}. However, the important new insight is that in our results the drop in selectivity is not seen until reaching 90 % CO₂ fraction, whereas in the cited literature this was already reported for feeds above 40 %. The key difference is that earlier investigations worked at complete CO conversion, which caused a significant gradient in CO partial pressure over the packed bed reactor, with complete absence of CO towards the end of the reactor. This means that CO₂ methanation as described in Case 3 occurred. To avoid this pitfall, CO conversion should be limited which is achieved by varying GHSV.

Table 3. Boundary conditions which determines role of CO2 in mixed CO/CO₂ FTS feeds, and the origin of higher methane production for the system at 220 °C and 21 bar.

Regime	Effluent CO partial pressure (bar)	Effluent H ₂ /CO ratio	CO ₂ function	Origin of higher methane production
1. FTS	Greater than 0.2	Below 10	Inert	Normal FTS
2. Risk of CO methanation	-	Above 10	Inert	CO methanation
3. CO ₂ methanation	Less than 0.2	-	Reactive	CO ₂ methanation

Reactivity of CO₂. To demonstrate CO₂ acts as an inert when the CO partial pressure exceeds 0.2 bar, CO₂ was replaced with Ar in the mixed-feeds (Figure 3a). With identical inlet partial pressure and H₂/CO ratio, both feeds indeed gave similar CO conversion and C₅₊-selectivity, confirming the inertness of CO₂ as described in Case 1 and 2. The complete product distribution is included in Figure S17. The lower C₅₊-selectivity for experiments with increased CO₂ fractions is thus caused by a higher H₂/CO ratio, and not CO₂ methanation.

Figure 3. Verification of CO₂ reactivity. a, CO conversion and C₅₊ selectivity of two sets of feeds with same CO concentration upon CO₂ replacement with Ar at 220 °C, 21 bar with a GHSV of 4900-85000 mL g_{cat}⁻¹ h⁻¹. **b,** Using ¹³CO₂ in mixed-feed FTS at 220 to 260 °C, 2 bar with a GHSV of 344 to 3444 mL g_{cat}⁻¹ h⁻¹ to demonstrate no CO₂ contribution in the formation of methane under CO conversion below 80 %. The conversion and selectivity are included in Table S2.

Additionally, ¹³CO₂ labelling experiments were performed to verify our hypotheses for the various cases. The catalyst was tested with a mixture of ¹³CO₂ in mixed-feeds at 220 °C and 2 bar (Figure 3b), with conversions and product distribution in Table S2. When CO₂ is inert, no ¹³CH₄ besides the natural isotope occurrence would be formed from ¹³CO₂ mixed-feeds. For both feeds

with 50 % and 90 % CO₂ fractions, no additional ¹³CH₄ were observed when CO conversion was below 40 %. This confirms the inert nature of CO₂ in Case 2 and points to CO methanation as the cause for the increased methane levels when 90 % CO₂ fraction was fed. By increasing the temperature to 260 °C, CO conversion increased to 80 % and the increase in ¹³CH₄ confirmed that ¹³CO₂ methanation occurred in the absence of sufficient CO as in Case 3. In-situ DRIFTS. To probe CO surface coverages in mixed-feed FTS, in-situ DRIFTS experiments were performed. DRIFTS spectra were recorded at 3 bar and 220 °C while the feedstock was switched with adjustment of the GHSV between "Low" and "High" for a CO2 fraction of 90 % and 50 %). Further details are included in the Methods section. Figure 4a depicts one representative DRIFTS spectrum at each reaction condition for the CO absorption region (2250-1700 cm⁻¹). Several peaks can be observed at the different conditions, including adsorbed CO (denoted as *) at 2037 cm⁻¹ and 2012 cm⁻¹, which are both ascribed to linearly adsorbed CO ^{48,49}. Further adsorbed species were observed in Figure S18. Figure 4b shows the intensities of these peak positions, normalized to the trough of CO_(g) – i.e., its IR-forbidden Q-branch (2143 cm⁻ ¹), ascribed to adsorbed CO over the course of the experiment. It is important to note that these intensities should be interpreted qualitatively, where within a given feed composition (i.e., 90 % CO₂ fraction or 50 % CO₂ fraction, whether low or high GHSV) time-resolved trends allow us to correlate species and their behavior.

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

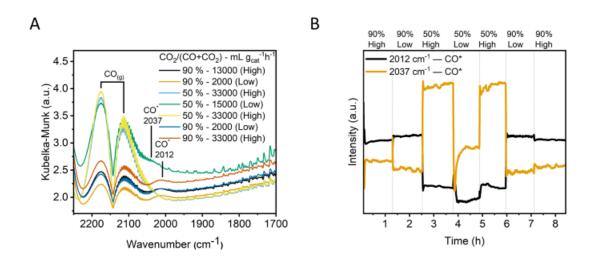
389

390

391

392

393


394

395

396

A clear difference between a CO₂ fraction of 90 % and 50 %, is the predominance of the wavelength at which CO* is observed. For a 50 % CO₂ fraction, the peak at 2037 cm⁻¹ dominates, while for 90 % CO₂ fraction, CO* appears at 2012 cm⁻¹. Upon the change from 90 % CO₂ fraction to 50 % CO₂ fraction, the observed time-dependent decrease of 2012 cm⁻¹ is anticorrelated to the increase in 2037 cm⁻¹, indicating a shift of CO* to higher wavenumbers which is likely due to

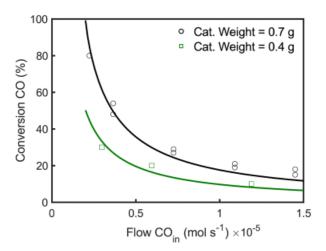

higher coverage of CO* on the cobalt surface ^{50,51}. The increase in normalized intensity of CO* species with increased CO partial pressure, i.e., comparing the feed composition of 90 % CO₂ fraction to 50 % CO₂ fraction further validates a higher coverage of CO* at higher CO partial pressures.

Figure 4. In-situ DRIFTS conducted under Low and High GHSV at 3 bar and 220 °C. **a,** One representative spectrum is shown for each gas composition. Intermediate species are labeled in the graphs. **b,** Intensity vs time-on-stream of adsorbed CO at 2012, and 2037 cm⁻¹. Intensities are normalized to the trough of CO_(g), 2143 cm⁻¹ to account for the effect of changing concentration of reactants CO_(g) and CO_{2(g)} absorbing in the same region.

Kinetic modeling. As described above, numerous experimental approaches were employed to identify the descriptors and boundary conditions in which CO₂ co-feeding resulted in a higher methane selectivity. A minimum CO outlet partial pressure of 0.2 bar is required to achieve sufficient CO surface coverage, essential for suppressing CO₂ methanation. When this condition is met, the kinetics of mixed CO/CO₂ feed FTS resemble conventional CO FTS. Hence the data for the 50 % CO₂ fraction is fitted to a power law kinetic model where $R_{CO}{}' = -k_1 C_{CO}^{\alpha} C_{H2}^{\beta}$. With a negative reaction order for CO, α (0 to -1), the reaction order for H₂, β , should be at least 0.5 to

obtain a reliable fit (Figure S19). Zennaro et al investigated the kinetics of a Co/TiO₂ catalyst in a packed bed reactor and reported α and β values of -0.24 and 0.74 respectively ⁵². Using these values to fit our experimental data (Figure 5), the kinetic constant was determined to be 65.8 mol^{0.5}L^{-0.5} s⁻¹. The good fit supports the reliability of the results and is further evidence for the inert nature of CO₂ in Case 1 and 2.

Figure 5. Fitting of kinetic data for a feed with a 50 % CO₂ fraction at 220 °C, 21 bar with reaction orders (α and β) of -0.24 and 0.74 respectively.

Microkinetic modeling. To evaluate the effect of the CO₂ fraction in the feed, mixed-feed hydrogenation was simulated using the recently developed first principles dual-site microkinetic model for CO hydrogenation ⁵³. This model includes over 600 elemantary reactions up to C₁₆ hydrocarbons, and explicitly includes a high CO coverage of between 0.5 and 0.6 monolayer (ML) ^{51,54}. Moreover, the CO- and C-saturated B₅ site (dual site) are modelled to represent step sites, with surface diffusion included. To describe reactions at lower CO partial pressures, competitive H* adsorption was included in addition to the non-competitive adsorption in the original model ⁵³. To account for CO₂ activation, an additional CO₂ activation pathway at B5 step sites was included, and the gas phase energies for the RWGS from DFT were corrected by changing the gas phase

energy of CO₂ to accurately reflect thermodynamic equilibrium. This correction is important to describe CO₂ methanation, where the RWGS is often quasi-equilibrated, but had a limited effect on the CO_x hydrogenation kinetics under FT conditions ⁵³. Further details are included in the Methods section. Similar to the described experiments, the CO₂/CO feed ratio was increased while keeping the CO conversion constant at 10 % (Figure 6a). The model predicts a very slight decrease in C₂₊ selectivity (80.5 % to 80.1 %) and corresponding increase in CH₄ selectivity (17.9 % to 18.6 %) when CO is replaced by CO₂ in line with the limited changes observed from experimental results. The chain growth probability decreases slightly from 0.775 to 0.766 when the CO₂ fraction is increased to 50%, and to 0.733 at a CO₂ fraction of 80 %. CO₂ activation is very slow under these conditions (10⁸ times slower than CO activation), and CO₂ formation on the terrace site CO^* + $0^* \rightarrow CO_2^* + *$ is slightly faster than CO₂ consumption. The slow CO₂ activation is rationalized from the Gibbs free energy profile at CO saturation coverages (Figure 6b, dotted lines). All four CO₂ activation pathways depicted in Figure 6b at saturation CO coverage have free energy barriers over 150 kJ/mol. At low CO coverage, several of these free energy barriers are below 100 kJ/mol, and it follows that the prevalence of CO₂ activation is very sensitive to the CO coverage. Alternative CO₂ activation pathways, e.g., via HCOO*, were calculated, but did not contribute significantly to CO₂ activation (Figure S20). Increasing the CO₂ fraction in the feed to 80 % and reducing the CO inlet partial pressure below 1 bar begins to impact the CO coverage due to competitive hydrogen adsorption. At this CO₂ fraction, the CO coverage reduces to 0.527 ML, close to the limit of the saturation coverage of the microkinetic model, 0.5 ML. A separate low CO coverage, dual-site CO₂ methanation model was used to simulate the experiments with a high CO₂ inlet fraction ⁵³. In this model, CO₂ is readily

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

activated to adsorbed CO*, consistent with the low activation energies in Figure 6b, which undergoes further hydrogenation to methane. The CO* coverage in these models is between 0.25-0.35 ML and methane selectivities over 95 % are predicted for a CO₂ conversion of 10 %.

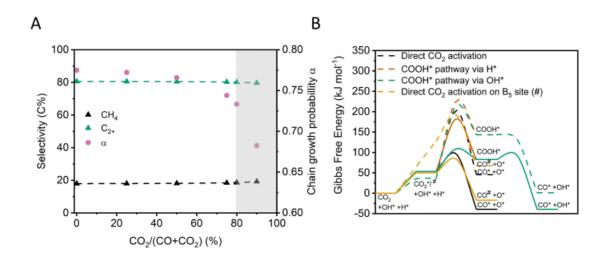


Figure 6. Microkinetic modeling to simulate the effect of CO₂ co-feeding with synthesis gas.

a, Selectivity for CH₄ and C₂₊, and chain growth probability for simulations with an increasing CO₂ fraction (500 K, 20 bar, H₂:CO_x:Ar ratio of 2:1:1, $X_{CO} = 10$ %), using kinetic and thermodynamic parameters calculated on CO–saturated cobalt terraces and on carbon and CO–saturated B5 step sites ⁵³. The grey area indicates the region where the Fischer-Tropsch microkinetic model is not valid anymore and low CO coverage kinetics become relevant. b, Free energy diagram for CO₂ activation pathways on the terrace site, including OH* assisted pathways, and CO₂ activation on the B₅ site. Full lines represent the low CO coverage (0/9 ML CO) DFT calculations and dashed lines the saturation CO coverage (6/12 ML CO) DFT calculations. Terrace sites are indicated by * and B₅ sites are indicated by #. Balancing OH_x* (x=0,1,2) groups are left out for clarity.

The relatively stable hydrocarbon distribution and chain growth probability for CO₂ fractions up to 80 % agree with experimental results. In addition to the experimentally identified descriptors of

H₂/CO ratio, CO partial pressures and coverages, the microkinetic model identified that a high CO coverage suppresses CO₂ activation and competitive H₂ adsorption could increase methane selectivity in a high CO₂ co-feeding environment.

4. Conclusion

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

The possible involvement of CO₂ in mixed-feed FTS was investigated using an industrially Co/TiO₂ catalyst. The identified process boundary conditions for limited methane production are governed by CO partial pressure and H₂/CO ratio. At 220 °C and 21 bar, the boundaries are a CO partial pressure above 0.2 bar and a H₂/CO ratio of below 10/1. CO₂ was unreactive up to 90 % CO₂ fraction at CO conversion below 70 %. The inertness of CO₂ was first verified by replacement of CO₂ with another inert gas (Ar) and subsequently by ¹³CO₂ isotopic labeling. Operando DRIFTS correlated the gas composition with CO surface coverage. The good fit of the mixed-feed FTS data to a power law kinetic model of conventional FTS supports the notion that CO₂ is inert under the above conditions. Mixed-feed hydrogenation was simulated using a first principles dual-site microkinetic model for CO hydrogenation, including competitive H₂ adsorption and CO₂ activation. Microkinetic modelling revealed that CO₂ activation is slow when there is sufficient CO coverage, as in Case 1, which preserves the C₂₊ selectivity. In contrast, insufficient CO coverage, as occurs in Case 2 and 3, readily allows CO and CO₂ methanation. The CO and H₂ coverages are crucial descriptors that determine the hydrocarbon distribution and accordingly, CO partial pressure and H₂/CO ratio are key process parameters for efficient mixed-feed FTS.

494 ASSOCIATED CONTENT

Supporting Information. Supporting Information includes supporting methods, catalyst characterization, catalytic results for CO₂-containing synthesis gas, reactivity of CO₂, *in-situ* DRIFTS, kinetic modeling and microkinetic modeling.

AUTHOR INFORMATION

Corresponding Author

* jingxiu.xie@rug.nl

Author Contributions

B.C.A.d.J. synthesized, characterized, performed and conceptualized catalytic tests and drafted manuscript. K.T.R. built and analyzed the microkinetic theoretical model. T.R. performed and analyzed *in-situ* DRIFTS P.v.d.T. performed kinetic modeling. L.R. contributed to the design and data analysis of the isotopic labelling experiments. G.L.B. contributed to conceptualization of experiments, data analysis and discussion. H.J.H. contributed to data analysis and discussion. M.S. built and analyzed the microkinetic theoretical model and contributed to discussions. C.V. analyzed *in-situ* DRIFTS and contributed to discussions. J.X. conceptualized the project and experiments, conceived and supervised the entire study, and provided resources All authors reviewed and contributed to the final manuscript.

515 Notes

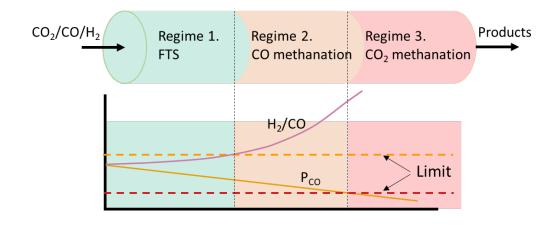
- 516 DATA AVAILABLILITY
- The data presented in the figures of this paper will be publicly available via Zenodo. Other
- supporting data are available from the corresponding authors upon request. Source data are
- 519 provided with this paper.

- 521 ACKNOWLEDGMENT
- K.R. is grateful to the Flemish Research Foundation (FWO) for financial support under the
- 523 CATCO2RE project (S004118N) and from the doctoral fellowship grant (1S94723N). T.R. and
- 524 C.V. thank the Russel Berri Nanotechnology Institute for scientific research support. Henk van de
- Bovenkamp and Gert-Jan Boer are acknowledged for technical support.
- 526 REFERENCES
- 527 1. Bergero, C., Gosnell, G., Gielen, D., Kang, S., Bazilian, M. & Davis, S. J. Pathways to net-
- zero emissions from aviation. *Nat Sustain* **6**, 404–414 (2023).
- 529 2. Dray, L., Schäfer, A. W., Grobler, C., Falter, C., Allroggen, F., Stettler, M. E. J. & Barrett,
- 530 S. R. H. Cost and emissions pathways towards net-zero climate impacts in aviation. Nat Clim
- 531 *Chang* **12**, 956–962 (2022).
- Viswanathan, V., Epstein, A. H., Chiang, Y. M., Takeuchi, E., Bradley, M., Langford, J.
- 8 Winter, M. The challenges and opportunities of battery-powered flight. *Nature* **601**, 519–525
- 534 (2022).
- Vogt, E. T. C. & Weckhuysen, B. M. The refinery of the future. *Nature* 629, 295–306
- 536 (2024).
- 537 5. Rommens, K. T. & Saeys, M. Molecular Views on Fischer-Tropsch Synthesis. *Chem Rev*
- 538 **123**, 5798–5858 (2023).
- 539 6. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt
- 540 Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev
- **107**, 1692–744 (2007).

- 542 7. Li, J., He, Y., Tan, L., Zhang, P., Peng, X., Oruganti, A., Yang, G., Abe, H., Wang, Y. &
- Tsubaki, N. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. *Nat*
- 544 *Catal* **1**, 787–793 (2018).
- Voigt, C., Kleine, J., Sauer, D., Moore, R. H., Bräuer, T., Le Clercq, P., Kaufmann, S.,
- 546 Scheibe, M., Jurkat-Witschas, T., Aigner, M., Bauder, U., Boose, Y., Borrmann, S., Crosbie, E.,
- 547 Diskin, G. S., DiGangi, J., Hahn, V., et al. Cleaner burning aviation fuels can reduce contrail
- cloudiness. *Commun Earth Environ* **2**, (2021).
- 549 9. Er-Rbib, H., Bouallou, C. & Werkoff, F. Production of synthetic gasoline and diesel fuel
- from dry reforming of methane. *Energy Procedia* **29**, 156–165 (2012).
- 551 10. Rostrup-Nielsen, J. R. Syngas in perspective. Catal Today 71, 243–247 (2002).
- Hao, X., Djatmiko, M. E., Xu, Y., Wang, Y., Chang, J. & Li, Y. Simulation analysis of a
- gas-to-liquid process using aspen plus. Chem Eng Technol 31, 188–196 (2008).
- 554 12. Panahi, M., Rafiee, A., Skogestad, S. & Hillestad, M. A natural gas to liquids process
- model for optimal operation. *Ind Eng Chem Res* **51**, 425–433 (2012).
- 556 13. Ermolaev, I. S., Ermolaev, V. S. & Mordkovich, V. Z. Efficiency of gas-to-liquids
- technology with different synthesis gas production methods. *Ind Eng Chem Res* **53**, 2758–2763
- 558 (2014).
- 559 14. Adelung, S., Maier, S. & Dietrich, R. U. Impact of the reverse water-gas shift operating
- 560 conditions on the Power-to-Liquid process efficiency. Sustainable Energy Technologies and
- 561 Assessments **43**, (2021).
- 562 15. König, D. H., Baucks, N., Dietrich, R. U. & Wörner, A. Simulation and evaluation of a
- process concept for the generation of synthetic fuel from CO₂ and H₂. Energy **91**, 833–841 (2015).
- 16. Uribe-Soto, W., Portha, J. F., Commenge, J. M. & Falk, L. A review of thermochemical
- processes and technologies to use steelworks off-gases. Renewable and Sustainable Energy
- 566 Reviews **74**, 809–823 (2017).
- 567 17. Savost'yanov, A. P., Yakovenko, R. E., Narochnyi, G. B. & Lapidus, A. L. Effect of the
- dilution of synthesis gas with nitrogen on the Fischer-Tropsch process for the production of
- 569 hydrocarbons. *Solid Fuel Chemistry* **49**, 356–359 (2015).
- 570 18. Muleja, A. A., Yao, Y., Glasser, D. & Hildebrandt, D. Effect of feeding nitrogen to a fixed
- bed Fischer-Tropsch reactor while keeping the partial pressures of reactants the same. *Chemical*
- 572 Engineering Journal **293**, 151–160 (2016).
- 573 19. Jess, A., Popp, R. & Hedden, K. Fischer-Tropsch-synthesis with nitrogen-rich syngas
- 574 Fundamentals and reactor design aspects. *Appl Catal A Gen* **186**, 321–342 (1999).
- 575 20. Khodakov, A. Y., Chu, W. & Fongarland, P. Advances in the development of novel cobalt
- 576 Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. *Chem Rev*
- **107**, 1692–1744 (2007).

- 578 21. Scarfiello, C., Pham Minh, D., Soulantica, K. & Serp, P. Oxide Supported Cobalt Catalysts
- for CO₂ Hydrogenation to Hydrocarbons: Recent Progress. *Adv Mater Interfaces* **10**, (2023).
- 580 22. Suo, Y., Yao, Y., Zhang, Y., Xing, S. & Yuan, Z. Y. Recent advances in cobalt-based
- 581 Fischer-Tropsch synthesis catalysts. Journal of Industrial and Engineering Chemistry 115, 92-
- 582 119 (2022).
- Zhang, Y., Jacobs, G., Sparks, D. E., Dry, M. E. & Davis, B. H. CO and CO₂ hydrogenation
- study on supported cobalt Fischer-Tropsch synthesis catalysts. *Catal Today* **71**, 411–418 (2002).
- Riedel, T. & Schaub, G. Low-temperature Fischer-Tropsch synthesis on cobalt catalysts-
- 586 effects of CO₂. *Topics in Catalysis* **26**, 145–155 (2003).
- 587 25. Gnanamani, M. K., Shafer, W. D., Sparks, D. E. & Davis, B. H. Fischer-Tropsch synthesis:
- 588 Effect of CO₂ containing syngas over Pt promoted Co/γ-Al₂O₃ and K-promoted Fe catalysts. *Catal*
- 589 *Commun* **12**, 936–939 (2011).
- 590 26. Díaz, J. A., De La Osa, A. R., Sánchez, P., Romero, A. & Valverde, J. L. Influence of CO₂
- 591 co-feeding on Fischer-Tropsch fuels production over carbon nanofibers supported cobalt catalyst.
- 592 *Catal Commun* **44**, 57–61 (2014).
- 593 27. Riedel, T., Claeys, M., Schulz, H., Schaub, G., Nam, S. S., Jun, K. W., Choi, M. J., Kishan,
- G. & Lee, K. W. Comparative study of Fischer-Tropsch synthesis with H₂/CO and H₂/CO₂ syngas
- 595 using Fe- and Co-based catalysts. *Appl Catal A Gen* **186**, 201–213 (1999).
- 596 28. Yao, Y., Hildebrandt, D., Glasser, D. & Liu, X. Fischer-Tropsch synthesis using
- 597 H₂/CO/CO₂ syngas mixtures over a cobalt catalyst. *Ind Eng Chem Res* **49**, 11061–11066 (2010).
- 598 29. Chakrabarti, D., De Klerk, A., Prasad, V., Gnanamani, M. K., Shafer, W. D., Jacobs, G.,
- 599 Sparks, D. E. & Davis, B. H. Conversion of CO₂ over a Co-based Fischer-Tropsch catalyst. *Ind*
- 600 Eng Chem Res **54**, 1189–1196 (2015).
- 601 30. Visconti, C. G., Lietti, L., Tronconi, E., Forzatti, P., Zennaro, R. & Finocchio, E. Fischer-
- Tropsch synthesis on a Co/Al₂O₃ catalyst with CO₂ containing syngas. Appl Catal A Gen 355, 61–
- 603 68 (2009).
- 604 31. Guilera, J., Díaz-López, J. A., Berenguer, A., Biset-Peiró, M. & Andreu, T. Fischer-
- Tropsch synthesis: Towards a highly-selective catalyst by lanthanide promotion under relevant
- 606 CO₂ syngas mixtures. Appl Catal A Gen 629, (2022).
- 607 32. Hong, G. H. & Moon, D. J. Development of fixed bed reactor for application in GTL-
- FPSO: The effect of nitrogen and carbon dioxide contents in feed gas on Fischer-Tropsch synthesis
- reaction over Ru/Co/Al₂O₃ catalyst. *Catal Today* **353**, 73–81 (2020).
- Daramola, M. O., Matamela, K. & Sadare, O. O. Effect of CO2 co-feeding on the
- 611 conversion of syngas derived from waste to liquid fuel over a bi-functional Co/H-ZSM-5 catalyst.
- 612 J Environ Chem Eng 5, 54–62 (2017).

- Park, K. S., Saravanan, K., Park, S.-J., Lee, Y.-J., Jeon, K.-W. & Bae, J. W. Effects of CO₂
- to deactivation behaviors of Co/Al₂O₃ and Co/SiO₂ for CO hydrogenation to hydrocarbons. *Catal.*
- 615 Sci. Technol. 7, 4079–4091 (2017).
- 616 35. González-Castaño, M., Dorneanu, B. & Arellano-García, H. The reverse water gas shift
- reaction: A process systems engineering perspective. *React Chem Eng* **6**, 954–976 (2021).
- of the state of th
- 619 Elucidating deactivation of titania-supported cobalt Fischer-Tropsch catalysts under simulated
- 620 high conversion conditions. *J Catal* **420**, 44–57 (2023).
- of van Koppen, L. M., Dugulan, A. I., Hensen, E. J. M. & Bezemer, G. L. Tuning stability of
- 622 titania-supported Fischer-Tropsch catalysts: Impact of surface area and noble metal promotion.
- 623 Catal Today **429**, (2024).
- 624 38. Le, T. A., Kim, M. S., Lee, S. H. & Park, E. D. CO and CO₂ Methanation Over Supported
- 625 Cobalt Catalysts. *Top Catal* **60**, 714–720 (2017).
- 626 39. Ten Have, I. C., Kromwijk, J. J. G., Monai, M., Sterk, E. B., Meirer, F. & Weckhuysen, B.
- M. Uncovering the reaction mechanism behind CoO as active phase for CO₂ hydrogenation. *Nat*
- 628 *Commun* **13**, (2022).
- 629 40. Melaet, G., Ralston, W. T., Li, C. S., Alayoglu, S., An, K., Musselwhite, N., Kalkan, B. &
- 630 Somorjai, G. A. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis
- and CO₂ hydrogenation. *J Am Chem Soc* **136**, 2260–2263 (2014).
- 632 41. Eschemann, T. O., Oenema, J. & De Jong, K. P. Effects of noble metal promotion for
- 633 Co/TiO₂ Fischer-Tropsch catalysts. *Catal Today* **261**, 60–66 (2016).
- Hernández Mejía, C., van Deelen, T. W. & de Jong, K. P. Activity enhancement of cobalt
- catalysts by tuning metal-support interactions. *Nat Commun* **9**, (2018).
- 636 43. Muleja, A. A., Yao, Y., Glasser, D. & Hildebrandt, D. Effect of feeding nitrogen to a fixed
- bed Fischer-Tropsch reactor while keeping the partial pressures of reactants the same. *Chemical*
- 638 Engineering Journal **293**, 151–160 (2016).
- 639 44. Eschemann, T. O., Oenema, J. & De Jong, K. P. Effects of noble metal promotion for
- 640 Co/TiO₂ Fischer-Tropsch catalysts. *Catal Today* **261**, 60–66 (2016).
- 641 45. Hernández Mejía, C., van Deelen, T. W. & de Jong, K. P. Activity enhancement of cobalt
- catalysts by tuning metal-support interactions. *Nat Commun* **9**, (2018).
- 643 46. Bezemer, G. L., Bitter, J. H., Kuipers, H. P. C. E., Oosterbeek, H., Holewijn, J. E., Xu, X.,
- Kapteijn, F., Van Diilen, A. J. & De Jong, K. P. Cobalt particle size effects in the Fischer-Tropsch
- reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128, 3956–3964
- 646 (2006).
- 647 47. Li, W., Nie, X., Yang, H., Wang, X., Polo-Garzon, F., Wu, Z., Zhu, J., Wang, J., Liu, Y.,
- 648 Shi, C., Song, C. & Guo, X. Crystallographic dependence of CO₂ hydrogenation pathways over
- 649 HCP-Co and FCC-Co catalysts. *Appl Catal B* **315**, (2022).


- 650 48. Song, D., Li, J. & Cai, Q. In situ diffuse reflectance FTIR study of CO adsorbed on a cobalt
- catalyst supported by silica with different pore sizes. Journal of Physical Chemistry C 111, 18970–
- 652 18979 (2007).
- 653 49. Paredes-Nunez, A., Lorito, D., Burel, L., Motta-Meira, D., Agostini, G., Guilhaume, N.,
- 654 Schuurman, Y. & Meunier, F. CO Hydrogenation on Cobalt-Based Catalysts: Tin Poisoning
- Unravels CO in Hollow Sites as a Main Surface Intermediate. Angewandte Chemie int. ed. 130,
- 656 556–559 (2018).
- 657 50. Chen, W., Zijlstra, B., Filot, I. A. W., Pestman, R. & Hensen, E. J. M. Mechanism of
- 658 Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst. ChemCatChem 10, 136-
- 659 140 (2018).
- 660 51. Weststrate, C. J., van de Loosdrecht, J. & Niemantsverdriet, J. W. Spectroscopic insights
- into cobalt-catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with
- single crystalline surfaces of cobalt. *J Catal* **342**, 1–16 (2016).
- 52. Zennaro, R., Tagliabue, M. & Bartholomew, C. H. Kinetics of Fischer-Tropsch synthesis
- on titania-supported cobalt. *Catal Today* **58**, 309–319 (2000).
- 665 53. Rommens, K. T., Gunasooriya, G. T. K. K. & Saeys, M. Key Role of CO Coverage for
- 666 Chain Growth in Co-Based Fischer-Tropsch Synthesis. ACS Catalysis 14, 6696–6709 (2024).
- 667 54. Gunasooriya, G. T. K. K., Van Bavel, A. P., Kuipers, H. P. C. E. & Saeys, M. CO
- adsorption on cobalt: Prediction of stable surface phases. Surf Sci 642, L6–L10 (2015).
- 55. Zhang, M., Wang, M., Xu, B. & Ma, D. How to Measure the Reaction Performance of
- Heterogeneous Catalytic Reactions Reliably. *Joule* **3**, 2876–2883 (2019).
- 671 56. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* 47,
- 672 (1993).
- 673 57. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and
- semiconductors using a plane-wave basis set. *Comput Mater Sci* **6**, 15–50 (1996).
- 675 58. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy
- calculations using a plane-wave basis set. *Phys. Rev. B* **54**, (1996).
- 677 59. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals
- density functional. *Journal of Physics Condensed Matter* **22**, (2010).
- 679 60. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to
- 680 solids. Phys Rev B Condens Matter Mater Phys 83, (2011).
- 681 61. Coltrin, M. E., Kee, R. J., Rupley, F. M. & Meeks, E. Surface Chemkin-III: A Fortran
- Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface-Gas-Phase Interface.
- 683 (1996).
- 684 62. Li, S. & Petzold, L. Software and algorithms for sensitivity analysis of large-scale
- differential algebraic systems. *J Comput Appl Math* **125**, 131–145 (2000).

- 686 63. Rommens, K. T., Gunasooriya, G. T. K. K. & Saeys, M. Supplementary Data and
- 687 Microkinetic Model for 'Key Role of CO Coverage for Chain Growth in Co-Based Fischer-
- 688 Tropsch Synthesis'. Zenodo (2024).
- 689 64. Bak, K. L., Jørgensen, P., Olsen, J., Helgaker, T. & Klopper, W. Accuracy of atomization
- 690 energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set
- 691 calculations. *Journal of Chemical Physics* **112**, 9229–9242 (2000).
- 692 65. Saeys, M., Reyniers, M. F., Neurock, M. & Marin, G. B. Ab initio reaction path analysis
- of benzene hydrogenation to cyclohexane on Pt(111). Journal of Physical Chemistry B 109, 2064—
- 694 2073 (2005).
- 695 66. Cheula, R., Tran, T. A. M. Q. & Andersen, M. Unraveling the Effect of Dopants in
- 696 Zirconia-Based Catalysts for CO₂ Hydrogenation to Methanol. ACS Catal 14, 13126–13135
- 697 (2024).

703

- 698 67. Christensen, R., Hansen, H. A. & Vegge, T. Identifying systematic DFT errors in catalytic
- 699 reactions. Catal Sci Technol 5, 4946–4949 (2015).
- 700 68. Saeys, M., Reyniers, M. F., Neurock, M. & Marin, G. B. Density functional theory analysis
- of benzene (De)hydrogenation on Pt(111): Addition and removal of the first two H-atoms. *Journal*
- 702 of Physical Chemistry B **107**, 3844–3855 (2003).

705 Graphical Abstract:

