
  

N-formylation of amino acid esters and peptides via peroxide mediated 
decarboxylative C-N coupling with α-keto acids 

Binduja Kadamannil, a Anjali Devi Subramanian,a Trinadh Ballanki,a Mohammad Irshad Hussain a and Baby Viswambharan*a 

Synthesis of N-formyl amino acids and peptides, that play a crucial role in protein biosynthesis and for the development of antimicrobial peptides, faces many 

challenges including harsh reaction condition, biproduct management etc. Reported here, is an efficient peroxide mediated N-formylation of amino acid ester 

derivatives via radical decarboxylative coupling with glyoxylic acids where only water and carbon dioxide forms as biproduct. H2O2 works well with N-

substituted while TBHP was successful for the N-formylation unprotected amino acid esters and oligopeptides. The methodology was extended for the 

synthesis of bioactive N-formyl methionine and f-MLP.  The library of synthesised N-ferrocenyl as well as free N-formyl amino acid and peptide derivatives 

might serve as hybrid material for medicinal and electrochemical applications

Introduction 

Amide bond formation and their reactions have emerged as a 

state of art approach for the construction of synthetically and 

biologically relevant peptide-therapeutics and 

peptidomimetics.1 Many modern antimicrobial peptides 

(AMPs) frequently encompasses N- formyl amino acid moiety, 

that plays a pivotal role in innate immunity of the host by 

selective peptide binding and activating the enzyme.2  Notably, 

N-formyl methionine (f-Met), a protein biosynthesis initiator in 

bacteria and a chemotactic agent for neutrophils, is present in 

antibacterial heptapeptide Microcin C, peptidyl tRNA and its 

mimic N-formyl methionine-leucine-phenyl alanine(f-MLP).3 

Additionally, formamide moiety is prevalent in natural products 

and pharmaceuticals such as orlistat,4  leucovorin,5  formoterol6 

and other chemotherapeutic agents7 (Scheme 1A). Also, 

formamide serves as valuable feedstock for the synthesis of N-

heterocycles,8 isocyanides,9 formamidines,10  and as key 

intermediates in Vilsmeier–Haack reaction.11 Existing methods 

for the N-formamidation of amino acids and peptides 

specifically employs formic acid12 or its derivatives including 

ammonium formate, triethyl formate, trichloro phenyl formate, 

acetyl formate etc.13 Other reagents includes imidazole in DMF 
14 and formyloxyacetoxyphenylmetane (FAPM).15  Nevertheless, 

challenge in using elevated temperature, coupling agents, 

expensive or sensitive reagents, and difficult to remove 

biproducts always urges to discover alternative approaches. In 

this context, Minisci reaction, a decarboxylative oxidative 

coupling of alpha ketoacids with heterocycles,16 is getting 

attention owing to the low toxicity, easy handling, high stability, 

cost efficiency and functional group tolerance.17  

Nickel catalysed electrochemical decarboxylative N-formylation of 
amines using glyoxylic acid developed by Lin et.al failed with bulky 
amines.18 Wu’s group introduced H2O2 promoted decarboxylative N-
formylation of amines with glyoxylic acid19 where benzylamines and 
alkylamines showed mediocre reactivity (Scheme 1B). Although, 
decarboxylative coupling of amino acids to other radical acceptors20 
are reported, to the best of our knowledge decarboxylative coupling 
of α-ketoacids to amino acids has not yet been reported. On that 
note, we report a simple and efficient methodology for N- 
formylation of amino acids and peptides using glyoxylic acid as 
formyl equivalent mediated by peroxides through decarboxylative 
coupling (Scheme 1C). 

 
Scheme 1 N-formyl amino acid in selected bioactive molecules, 
background and present work 

Result and Discussions  

To validate our assumption, N-benzyl-L-alanine methyl ester (1a) and 
glyoxylic acid (2a) was taken as the model substrate. The reaction 
was carried out with 1a (1 equiv.) and 2a (2 equiv.) at room 
temperature for 1 hour in the presence of 2 equiv. of hydrogen 
peroxide in 1ml of dimethyl sulfoxide (DMSO) as solvent under open 
atmosphere yielding N-benzyl-N-formyl-L-alanine methyl ester (3a) 
in 53% as mixture of two rotamers in the ratio 1: 0.76 (Table 1 entry 
1). The structure of 3a was confirmed by 1H, 13C NMR and HRMS 
analysis. The existence of dynamic rotamers were confirmed by 
recording the proton nmr spectrum in DMSO-d6 where the 
conformer ratio was changed to 1: 0.92.  
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Table 1. Optimization of reaction conditions. 

The yield was found to be increasing up to 93% with increasing the 
amount of DMSO to 2 ml (Table 1, entry 2).  The reaction was 
repeated by changing the stoichiometry of H2O2 to 1 equiv. and the 
product formation was decreased to 49% (Table 1, entry 3). 
Attempting the reaction using 1.5 equiv. of glyoxylic acid decreased 
the formation of 3a to 44% (Table 1, entry 4). Other solvents, except 
1,4-dioxane (88% of 3a), gave inferior results (ESI). Oxidizing agents 
like K2S2O8, (NH4)2S2O8, Na2S2O8 and m-CPBA were completely failed 
to form the product, even though Oxone gave 4% product (ESI). TBHP 
yielded 3a in 52%, on extending the reaction time to 12hr, the yield 
was increased to 89% (Table 1, entry 5 & 6). These investigations led 
us to finalize the solvent, oxidant and reagent stoichiometry. 
Comparing the effect of various inorganic and organic bases indicate 
that rate of product formation gets diminished with the addition 
although yield became elevated with increasing the stoichiometries 
of bases. (Table 1, entries 7 to 10). A reverse effect was observed 
with acid as additives where the yield got improved with lowering 
the stoichiometry (Table 1, entries 11-16). These findings suggest 
that the decarboxylative formylation is slow in both acidic and basic 
condition.  Finally, we executed the reaction under argon and oxygen 
atmosphere (Table 1, entry 15 & 16) which gave the desired product 
in 80% and 68% yield respectively. A detailed optimization is 
available in the electronic supplementary information. Further the 
reaction was scaled up to 5.17 mmol and the yield of 3a obtained 
was 87% (ESI). 

Encouraged by the optimum condition, we sought to explore 
the substrate scope with different N-substituted amino acid 

esters. Initially we have expanded the substrate scope to 
various substituted benzyl, napthalenyl, anthracenyl and 
pyrenyl protected alanine methyl esters. Electronic effects of 
the substituents on benzene ring was negligible as the 
corresponding products 3a-3h were obtained in 93- 63% yields. 
Remarkably, N-napthalenyl, anthracenyl and pyrenyl 
substituted alanine methyl esters gave the corresponding N-
formyl products (3i-k) in albeit in moderate yields presumably 
because of the steric effect. We further explored our substrate 
scope towards other amino acid esters.  N-Benzyl glycine ethyl 
ester, valine and phenyl alanine gave the desired product (3l, 
3m & 3n) in very good yields while tryptophan (3o) gave 44% of 
desired product. N- Benzyl leucine methyl ester (3p) shows 
good reactivity towards formylation, whereas methionine 
methyl ester (3q) gave lower yield. Notably, N-formyl leucine 
moiety is a part of clinically running obesity drug orlistat, 
whereas N-formyl methionine (f-Met)21 is structurally relevant 
moiety available in Microcine-C7 heptapeptide and f-MLP 
tripeptide.22 We have extended this methodology for the 
synthesis of N-formyl-N-indolyl amino acid esters (4a-4q). 
Simple indolyl protected alanine methyl ester (4a) gave the 
desired product in 85% of yield whereas N-Me (4b) gave78% of 
product. Electron withdrawing N-tosyl indole (4c) gave lower 
yield whereas N-Boc (4d) indolyl substituent afforded the 
corresponding product in 78%. The structure of 4b was 
confirmed by single crystal XRD analysis (ESI). N-benzyl (4e) and 
N-allyl (4f) indolyl protected alanine methyl ester show almost 
same reactivity towards formamide synthesis. Substituents at 4, 
5 and 7 position of indole aromatic ring underwent N-
formylation in excellent to moderate yield (4g-4p). Electron 
donating group such as Me and OMe at 5th position is well 
tolerated for this reaction condition offered 4l and 4m in 56% 
and 59% respectively. Unfortunately, Indolyl with 5-OBn 
substitution failed to give product under standard conditions. 
However, indole having 4-Cl (4n), 7-Me (4o) and 7-NO2 (4p) 

substituents gave the desired product in 54%, 31% and 56% 
respectively. Meanwhile, the formylation yields were 
remarkably affected by 2 -substituted indolyl amino acid 
derivatives as 2-methyl (4q), which gave only trace amount of 
desired product, confirmed by HRMS, whereas 2- phenyl 
substituted indolyl derivative failed to undergo formylation 
because of the steric effect. Indolyl protected valine and leucine 
gave (4r) and (4s) 94% and 71% respectively. Interestingly, 
pyridinyl, thiophenyl and furanyl protected alanine methyl 
esters were tolerated the condition and gave (4t-4v) in 92%, 98 
% and 96% yields respectively. The above results reaffirm the 
reduced steric effect exerted by the five membered rings. 
Interestingly, N-tolyl glycine methyl ester gave 4w in 58% 
compared to the N-benzyl substitution whereas an allyl aryl 
amine gave 4x in 52%.  Furthermore, ferrocene bioconjugate of 
amino acids/peptide are widely accepted for their fascinating 
Furthermore, ferrocene bioconjugate of amino acids/peptide 
are widely accepted for their fascinating structural properties 
henceforth are used as biosensors, anti-microbial, and in 
biomedical applications. 21 The ferrocenyl N-formyl amino acid 
bioconjugates are yet to be unravelled. 

 
S. No Oxidant  

(equiv.) 
Additives 
(equiv.) 

Solvent  
(ml) 

Yield a (%) 
3a 

1 H2O2(2) Nil DMSO (1) 53 

2 H2O2(2) Nil DMSO (2) 93 

3 H2O2 (1) Nil DMSO (2) 49 

4 H2O2(2) Nil DMSO (2) 44b 

5 TBHP (2) Nil DMSO (2) 52 

6 TBHP (2) Nil DMSO (2) 89c 

7 H2O2(2) K2CO3 (0.1) DMSO (2) 24 

8 H2O2(2) K2CO3 (1) DMSO (2) 61 

9 H2O2(2) NaOAc (0.1) DMSO (2) 16 

10 H2O2(2) NaOAc (1) DMSO (2) 69 

11 H2O2 (2) Benzoic acid (0.1) DMSO (2) 70 

12 H2O2 (2) Benzoic acid (1) DMSO (2) 42 

13 H2O2 (2) Acetic acid (0.1) DMSO (2) 37 

14 H2O2 (2) Acetic acid (1) DMSO (2) 19 

15 H2O2 (2) BF3.OEt2 (0.1) DMSO (2) 53 

16 H2O2 (2) BF3.OEt2 (1) DMSO (2) 0 

17 H2O2(2) Nil DMSO (2) 80d 

18 H2O2(2) Nil DMSO (2) 68e 

Reaction conditions: 1a (1 equiv.), 2a (1 equiv.) under open 
atmosphere. a Yield after purification; 

b 
1.5 equiv. of g l y o x y l i c  

a c i d ; 
c 12hr; d Ar atmosphere; 

e O2 atmosphere. 
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Table 2 Substrate scope for the synthesis of substituted formamides 

 

  aReaction condition: 1a (1 equiv.), 2a (1 equiv., 50% in water), H2O2 (2 equiv., 30% in water), DMSO (2mL), rt, Open atmosphere, 1hr, 
Isolated yield  

Interestingly, various ferrocenyl substituted amino acid 
derivatives underwent formylation effectively under optimized 
condition. The N-ferrocenyl substituted alanine, phenyl alanine, 
valine, leucine and methionine gave corresponding products 5a-
5e in 84%, 61%, 83%, 75% and 90% respectively. The structure 
of 5c was confirmed by single crystal analysis. Regrettably, the 
reaction failed with proline and sarcosine methyl ester 
hydrochlorides, Boc, acetyl and benzoyl protected amino acid 
methyl esters (ESI). The selectivity of N-formylation amines over 
amides was verified using methyl 2-(2-(p-tolylamino) 
acetamido) propanoate where the N-formylation was selective 
towards secondary amine compared to peptide yielding 6a in 
46% yields. Similar reactivity was observed for valine, leucine 
and phenyl alanine ester derivatives and accomplished the 
formamides(6b-d) in 39%, 35% and 48% yields respectively.  

Further, extending the substrate scope to free-amino acid ester 
hydrochlorides failed to undergo N-formylation under the optimized 

reaction condition. However, N-formylation of unprotected phenyl 
alanine methyl ester hydrochloride underwent N-formylation under 
the developed condition and yielded 8a only in 12% even after 
keeping the reaction for 12hr.  

Interestingly, the yield of 8a was improved to 67% by replacing H2O2 

with tertiary butyl hydroperoxide (70% TBHP in water) and by the 
addition of NaOAc (1.2 equiv.) to neutralize the acid salt (Table 3). 
(see optimization table in ESI). Extending this modified condition to 
methionine and tryptophan esters furnished the corresponding N-
formylated product 8b and 8c in 50% and 63% in yield. Extending the 
modified condition to methionine and tryptophan esters furnished 
the corresponding N-formylated product 8b and 8c in 63% and 50% 
in yield (Table 3). 8b on hydrolysis yielded N-formyl methionine (8b’), 
a protein biosynthesis initiator in bacteria.21 Inspired by these 
results, we elaborated this methodology for N-benzoylation using 
benzoyl formic acid and yielded the respective products 8d-g, in 
moderate yield. To our dismay, indole glyoxylic acid gave the amide 
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8h in 10% yield while pyrrole glyoxylic acid, pyruvic acid and oxamic 
acid did not work under the above condition. Interestingly, this 
methodology worked for the N-formylation of di and tripeptides. N-
Formylation of the methyl esters of dipeptides, phenyl alanine-
alanine, phenyl alanine-valine and methionine-leucine afforded 9a, 
9b and 9c in 75%, 65% and 70% yields respectively.   Intrigued by 
these results synthesis of N-formyl methionyl-leucyl-phenylalanine 
10b (f-MLP), a chemotactic agent for leukocyte receptor and also a 
macrophage activator22 was achieved in 77% yield by the formylation 
of the oligo peptide, followed by hydrolysis of 10a.  
 
Table 3 Substrate scope with amino acids and peptides 

 
aReaction condition: 7 a-f (1 equiv.), 2b (1 equiv.), TBHP (2 equiv., 
70% in water), NaOAc (1.2 equiv.) DMSO (2mL), rt, Open 
atmosphere, 12hr, Isolated yield based on 7 a-f. 

Mechanistic investigation 

To understand possible reaction mechanism several controlled 
experiments were performed (Scheme 2). Performing the reaction in 
presence of 5 equiv. radical scavenger 2,2,6,6-tetramenthyl-1-
piperidinyloxy (TEMPO) yielded 3a in 38% whereas 1.2 equiv. of BHT 
(butylated hydroxytoluene) quenched the reaction to 15% (more 
details can be found in ESI). Based on controlled experiments and 
previous literature reports, 17b, 19 we propose two different reaction 
mechanisms (Scheme 2). A major radical pathway initiated by the 
hydroxyl/tertiary butoxy radical formed from the homolysis of 
H2O2/TBHP. Intermediate I formed from 1a and 2a undergo a 
hydrogen radical transfer to form II and water/tBuOH followed by the 
elimination of carbon dioxide generate radical III. The radical III gets 
stabilized by the lone pair on nitrogen to form iminium radical cation 
IV.  A hydrogen radical abstraction by hydroxyl/tertiary butoxy 
radical to form 3a and water/tBuOH. Reaction with additives like 
acids and bases suggest that the role of imine formation through 
normal condensation (Table 1, entries 7 -16). So, in a minor pathway 
from Intermediate I forms an iminium cation V by losing water. Base 
promoted addition of peroxide to V followed by the removal of 
ROH/H2O and CO2 through a cyclic transition state generate 3a. 

 

Scheme 2 Controlled experiments and Possible mechanism 

Having manifested by the synthetic applications of N-formyl amino 
acids, we further demonstrated the functional group 
transformations of selected N-formyl amino acid esters and 
peptides. Isocyanides are considered as a strategic functional group 
in organic transformations24, but also considered as a valuable 
pharmacophoric group in medicinal chemistry.25 So, 8c was 
converted to the corresponding isocyanide 11 which could be a 
precursor for (Z)-3-(2-Isocyanovinyl)-1H-indole, an indole antibiotic 
B371 precursor.26 Additionally, N-Ferrocenyl-N-formyl valine ester 
hydrochloride 5c was reduced with lithium aluminium hydride to the 
corresponding alcohol 12 (48%). 5c was hydrolysed to yield the acid 
13 in 98% which was further converted to the dipeptides 14 and 15 
in 48% and 21% yields (Scheme 3). We have also demonstrated the 
application of current methodology for the synthesis of biorelevant 
N-formyl tripeptides, N-Formyl-methionine-leucyl-phenylalanine (f-
MLP)23 and its bioconjugate N-ferrocenyl-N-formyl-MLP starting 
from N-formyl methionine methyl ester 3q and 5e respectively by 
peptide coupling. To explore further the application of the ferrocene 
conjugated N-formamides, 5a-d, preliminary photophysical and 
electro chemical studies were conducted. The absorption and 
florescence emission spectra were taken for one millimolar solutions 
in acetonitrile and the results are included in the ESI.   Cyclic 
voltammetry (CV) was performed using a CHI660E electrochemical 
workstation with glassy carbon electrode (GCE), Ag/AgCl (1 M KCl) 
and platinum wire as the working, reference and counter electrodes 
respectively (See ESI) and observed that the redox potentials were 
similar to that of ferrocene. Further studies towards these aspects 
are underway. 

Conclusion  

In conclusion, a simple, convenient and mild method for the N-
formylation of amino acids and peptides were achieved through 
metal and coupling reagent free condition where water and carbon 
dioxide as the easily removable biproducts. The developed 
methodology gives an access to a library of synthetically relevant N-
formyl amino acid derivatives and peptides that can display 
interesting pharmaceutical and electrochemical applications.  We 
have also applied this strategy for the synthesis of chemotactic 
agents N-formyl methionine and f-MLP as well as the corresponding 
ferrocene bioconjugates.  
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Scheme 3 Functional group conversion and synthesis of bioactive f-
MLP analogue 
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