
 

CACHE Challenge #2: Targeting the RNA Site of the SARS-CoV-2 Helicase Nsp13 
 

 
Oleksandra Herasymenko1, Madhushika Silva1, Abd Al-Aziz A. Abu-Saleh1, Ayaz 
Ahmad2, Jesus Alvarado-Huayhuaz3, Oscar E. A. Arce3, Roly J. Armstrong2, Cheryl 
Arrowsmith1,4,5, Kelly E. Bachta6, Hartmut Beck7, Denes Berta8, Mateusz K. Bieniek2, 
Vincent Blay9, Albina Bolotokova1, Philip E. Bourne10, Marco Breznik11, Peter  J. 
Brown12, Aaron D. G. Campbell2, Emanuele Carosati13, Irene Chau1, Daniel J. Cole2, 
Ben Cree2, Wim Dehaen14,15, Katrin Denzinger11, Karina dos Santos Machado3, Ian 
Dunn16, Prasannavenkatesh Durai17, Kristina  Edfeldt18 , Aled Edwards1, Darren 
Fayne20,33, Kallie Friston2, Pegah Ghiabi1, Elisa Gibson1, Judith Guenther21, Anders 
Gunnarsson22, Alexander Hillisch23, Douglas R. Houston24,Jan Halborg Jensen25, Rachel 
J. Harding1,26,27, Kate S. Harris2, Laurent Hoffer28, Anders Hogner29, Joshua T. Horton2, 
Scott Houliston5, Judd F. Hultquist6,30, Ashley Hutchinson1, John J. Irwin31, Marko 
Jukič32, Shubhangi Kandwal19,20,33 , Andrea Karlova34, Vittorio L. Katis35,Ryan P. Kich6 
Dmitri Kireev36, David Koes16, Nicole L. Inniss37 Uta Lessel38, Sijie Liu39, Peter Loppnau1, 
Wei Lu40, Sam Martino8, Miles McGibbon25, Jens Meiler41,42, Akhila Mettu36, Sam 
Money-Kyrle9, Rocco Moretti41,42, Yurii S. Moroz43, Charuvaka Muvva17, Joseph A. 
Newman44, Leon Obendorf39,Brooks Paige34, Amit Pandit39, Keunwan Park17, Sumera 
Perveen1,Rachael Pirie2, Gennady Poda27,28, Mykola Protopopov43,45, Vera Pütter46, 
Federico Ricci47, Natalie J. Roper2, Edina Rosta8, Margarita Rzhetskaya6, 30, Yogesh 
Sabnis48, Karla J. F. Satchell37, Frederico Schmitt Kremer49, Thomas Scott41,42, Almagul 
Seitova1, Casper Steinmann50, Valerij Talagayev11, Olga O. Tarkhanova43, Natalie J. 
Tatum51, Dakota Treleaven52, Adriano Velasque Werhli3, W. Patrick Walters53, Xiaowen 
Wang36, Jude Wells34, Geoffrey Wells54, Yvonne Westermaier55, Gerhard Wolber39, Lars 
Wortmann38, Jixian Zhang40, Zheng Zhao10, Shuangjia Zheng56, and Matthieu 
Schapira1,57  

 

1Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, 
Canada 
2School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon 
Tyne, United Kingdom 
3Center for Computational Sciences, Universidade Federal do Rio Grande - FURG, Rio 
Grande, Brazil. 
4Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, 
Canada 
5Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 
2C4, Canada 
6Division of Infectious Diseases, Department of Medicine, Northwestern University 
Feinberg School of Medicine, Chicago, IL 60611, USA. 
7Bayer AG, Drug Discovery Sciences, 42096 Wuppertal, Germany. 
8University College London, Department of Physics and Astronomy, London WC1E 6BS 
9Department of Microbiology and Environmental Toxicology, University of California 
Santa Cruz, USA 

https://doi.org/10.26434/chemrxiv-2025-8f0rq-v3 ORCID: https://orcid.org/0009-0006-6458-0042 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-8f0rq-v3
https://orcid.org/0009-0006-6458-0042
https://creativecommons.org/licenses/by/4.0/


 

10School of Data Science, University of Virginia, Charlottesville, United States of 
America. 
11Computational Molecular Design, Institute of Pharmacy, Freie Universität Berlin, 
Königin-Luisestr. 2 + 4, 14195 Berlin, Germany 
12UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North 
Carolina, United States of America. 
13Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Italy 
14Department of Organic Chemistry, Faculty of Chemical Technology,University of 
Chemistry and Technology Prague, Technická 5, 16 628 Prague 6, Czech Republic; 
15Department of Informatics and Chemistry, Faculty of Chemical Technology,University 
of Chemistry and Technology Prague, Technická 5, 16 628 Prague 6, Czech Republic. 
16Department of Computational and Systems Biology, University of Pittsburgh, 
Pittsburgh, Pennsylvania 15261, United States of America. 
17Korea Institute of Science and Technology, Republic of Korea 
18Structural Genomics Consortium, Department of Medicine, Karolinska University 
Hospital and Karolinska Institutet, Stockholm, Sweden. 
19Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical 
Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, 
Ireland 
20DCU Life Sciences Institute, Dublin City University, Dublin, Ireland 
21Bayer AG, Drug Discovery Sciences, 13353 Berlin, Germany. 
22Structure and Biophysics, Discovery Sciences, BioPharmaceuticals R&D, 
AstraZeneca, 431 50 Gothenburg, Sweden Pepparedsleden 1, Mölndal 431 50, 
Sweden. 
23UCB, 40789 Monheim am Rhein, Germany. 
24USchool of Biological Sciences, University of Edinburgh,Old College, South Bridge, 
Edinburgh, EH9 3BFEH8 9YL, United Kingdom 
25Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 
Copenhagen, Denmark. 
26Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, 
M5S 1A8, Canada 
27Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, 
Canada 
28Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 
0A3, Canada. 
29Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and 
Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, 
Sweden. 
30Center for Pathogen Genomics and Microbial Evolution, Northwestern University 
Havey Institute for Global Health, Chicago, IL 60611, United States of America. 
31UCSF Pharmaceutical Chemistry, 1700 4th St, San Francisco CA 94523 
32University of Maribor, Slovenia Laboratory of Physical Chemistry and Chemical 
Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of 
Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; Faculty of Mathematics, 

https://doi.org/10.26434/chemrxiv-2025-8f0rq-v3 ORCID: https://orcid.org/0009-0006-6458-0042 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-8f0rq-v3
https://orcid.org/0009-0006-6458-0042
https://creativecommons.org/licenses/by/4.0/


 

Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 
ulica 8, SI-6000 Koper, Slovenia. 
33Molecular Design Group, School of Chemical Sciences, Dublin City University, 
Glasnevin, Ireland. 
34Department of Computer Science, University College London, United Kingdom. 
35Centre for Medicines Discovery, NDM Research Building, University of Oxford, Old 
Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom 
36Department of Chemistry, University of Missouri, Columbia, Missouri 65211-7600, 
United States of America. 
37Department of Microbiology-Immunology, Northwestern University Feinberg School of 
Medicine, Chicago, IL 60611 United States of America. 
38Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65,88397 Biberach 
an der Riss, Germany 
39Free University of Berlin Institute of Pharmacy, Computational Molecular Design, 
Berlin, Berlin, DE 14195 
40Galixir Technologies, 200100 Shanghai, China 
41Vanderbilt University, Center for Structural Biology, South Nashville, TN, United States 
of America. 
42Vanderbilt University, Department of Chemistry, Nashville, TN 37240, United States of 
America 
43Chemspace, Kyiv, Ukraine 
44University of Oxford, Centre for Medicines Discovery, Department of Biochemistry, 
south parks rd, Oxford, Oxfordshire, UK OX1 3QU 
45Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 
46Nuvisan ICB GmBH,13353 Berlin  89231 Neu-Ulm, Germany. 
47University of Messina, Messina, Italy 
48UCB, Braine-L'Alleud, Belgium 
49OmixLab, Universidade Federal de Pelotas, Capão do Leão, Brazil 
50Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 
9220, Aalborg, Denmark. 
51Newcastle University Centre for Cancer, Translational and Clinical Research Institute, 
Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon 
Tyne NE2 4HH, UK 
52Conscience Medicines Network, Toronto, Ontario M5G 1L7 Canada 
53Relay Therapeutics, Cambridge, Massachusetts 02141, United States of America. 
54Department of Pharmaceutical and Biological Chemistry. University College London, 
United Kingdom. 
55Boehringer Ingelheim RCV, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria 
56Shanghai Jiao Tong University, Shanghai, China 
57Department of Pharmacology and Toxicology, University of Toronto, Canada  
 
 

 

https://doi.org/10.26434/chemrxiv-2025-8f0rq-v3 ORCID: https://orcid.org/0009-0006-6458-0042 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2025-8f0rq-v3
https://orcid.org/0009-0006-6458-0042
https://creativecommons.org/licenses/by/4.0/


 

 

 

 

ABSTRACT 
 
A critical assessment of computational hit finding experiments (CACHE) challenge was 
conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a 
highly conserved COVID-19 target. Twenty-three participating teams comprised of 
computational chemists and data scientists used protein structure and data from 
fragment-screening paired with advanced computational and machine learning methods 
to each predict up to 100 inhibitory ligands. Across all teams, 1957 compounds were 
predicted and were subsequently procured from commercial catalogs for biophysical 
assays. Of these compounds, 0.7% were confirmed to bind to Nsp13 in a surface 
plasmon resonance assay. The six best performing computational workflows used 
fragment growing, active learning, or conventional virtual screening with and without 
complementary deep-learning scoring functions. Follow-up functional assays resulted in 
identification of two compound scaffolds that bound Nsp13 with a Kd below 10 µM and 
inhibited in vitro helicase activity. Overall, the CACHE #2 was successful in identifying 
hit compound scaffolds targeting Nsp13, a central component of the coronavirus 
replication-transcription complex. Computational design strategies recurrently 
successful across the first two CACHE challenges include linking or growing docked or 
crystallized fragments and docking small and diverse libraries to train ultra-fast 
machine-learning models. The CACHE#2 competition reveals how crowd-sourcing 
ligand prediction efforts using a distinct array of approaches followed with critical 
biophysical assays can result in novel lead compounds to advance drug discovery 
efforts. 
 
 
INTRODUCTION 
 
The Critical Assessment of Computational Hit Finding (CACHE) challenges are 
prospective benchmarking exercises modeled after CASP1 where computational 
chemists and data scientists use their methods to predict small-molecule ligands for a 
pre-defined protein target2. But unlike CASP, CACHE challenges are prospective: 
predicted molecules are tested experimentally and all data shared publicly. The goal of 
CACHE is to delineate the state-of-the-art in computational hit discovery, an area poised 
for breakthroughs driven by advances in artificial intelligence (AI). The first CACHE 
challenge (CACHE #1), focused on the WDR domain of LRRK2, a Parkinson’s disease 
target. An apo structure of the targeted domain was available in the protein data bank 
(PDB), but no ligand had been reported at the time. CACHE #1 reflected a highly 
dynamic and explorative field; a few weakly active molecules were discovered, 
indicating that significant progress remains to be seen3,4.  
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In CACHE #2, computational teams were challenged to find drug-like ligands targeting 
the RNA-binding site of the SARS-CoV-2 helicase Nsp13, a site with bound fragments 
in the PDB (PDB codes 5RLH, 5RLZ, 5RML, and 5RMM)5 (Figure 1). The reported 
fragments had no measurable binding affinity but highlighted putative interaction 
hotspots in the RNA binding site of Nsp13, which is one of the two most conserved sites 
in the coronavirus proteome and represents an attractive target for novel antivirals6. 
Nucleic acid binding sites are typically highly polar and poorly druggable, but low 
micromolar ligands targeting the RNA sites of SNRNP2007 and HCV NS38 (PDB 5URM 
and 4OKS, respectively) have been reported, supporting the idea that these sites can 
successfully be targeted by small molecules in some cases. Helicases are a clinically 
validated target class9 but are often recalcitrant to medicinal chemistry efforts due to the 
transient nature of their conformational states10. As such, well-characterized small 
molecule ligands for Nsp13 would represent valuable chemical starting points for drug 
discovery.  
 

 
Figure 1: Fragments occupy the SARS-CoV-2 Nsp13 RNA-binding channel. Composite 
image formed by superimposing experimental structures of Nsp13 in complex with four 
fragments and in complex with RNA and ADP (blue and orange respectively; PDB code 
7RDY11). CACHE #2 participants were asked to find ligands targeting the RNA-binding 
site occupied by fragments. Electrostatic potential coloring of the binding site, revealing 
the overall polar area, and bound fragments are depicted in the inset. 
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Here, we review the computational workflows and associated hit rates of the 23 teams 
who participated in CACHE #2. In an initial “hit identification” round (Round 1), each 
team selected up to 100 compounds from the Enamine catalog resulting in 1957 
molecules that were procured and tested using Surface Plasmon Resonance (SPR), a 
direct biophysical binding assay. Each computational group was provided with 
experimental data on their respective compounds and asked to select up to 50 
commercial analogs of their experimentally confirmed compounds of interest. The goal 
of this “hit expansion” round (Round 2) was to establish chemical series with multiple 
compounds experimentally confirmed to further build confidence in determining 
successful computational workflows. In parallel, all teams were asked to predict active 
molecules from the library composed of all Round 1 compounds collectively selected by 
all participants, a complementary evaluation mechanism where participants predict from 
the same library.  
 
As in CACHE #1, the participating teams used a diverse array of workflows. Overall, hit 
rates were low compared with virtual screening results typically reported in the 
literature, with no clear benefit of using methods supplemented by machine-learning 
over purely physics-based methods. Nevertheless, 13 experimentally validated 
Nsp13-targeting chemical series (binding affinities ranging from 1 to 90 µM) were 
identified by 11 different teams, representing starting points for the development of 
chemical probes to explore the antiviral effect of Nsp13 inhibition. 
 
RESULTS 
 
The CACHE #2 competition targeting SARS-CoV-2 Nsp13 was initiated with 
applications due in September 2022. As specified in the CACHE roadmap2, an 
independent applications review committee (Table S1) selected 25 participants for 
CACHE #2, based on the results of a double-blind peer review process where each 
applicant evaluates and rates five randomly selected applications. Twenty three out of 
the 25 selected teams submitted their computational predictions within the specified 
two-month timeframe.  
 
Computational workflows were diverse 
 
The computational workflows represented diverse design strategies, techniques and 
tools (Figure 2). Out of 23 teams, ten used neural networks to generate or evaluate 
compounds, eight used crystallized fragments in the PDB to guide their design, seven 
used molecular dynamics simulations to account for protein flexibility, four used free 
energy calculation and two quantum mechanics to refine their prediction. 
 
For example, the Poda-Hoffer team (workflow 1448 - WF1448), adopted a conservative, 
purely physics-based but well-established screening pipeline where Glide (Schrodinger, 
New York, Inc.) was used to screen a large and diverse library, with pharmacophoric 
constraints, against a conformational ensemble extracted from fragment-bound Nsp13 
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crystal structures in the PDB, along with a few conformationally refined snapshots from 
quick molecular dynamics simulations. The output was refined with another scoring 
function (HYDE, BioSolveIT) after considering crystallographic water molecules from the 
system. Both computational and medicinal chemists visually inspected the top-scoring 
molecules to finalize the selection.  
 
The Moretti-Meiler team (WF1414) implemented the challenge on Drug-it within the 
Fold-it platform12, where citizen scientists use an online gaming interface to grow 
fragments bound to Nsp13 available in the PDB. After multiple rounds of chemical 
modification, the closest commercial analogs were re-docked with RosettaLigand13 and 
ranked based on neural network-predicted absolute binding free energies14. 
Interestingly, these widely divergent workflows ended-up producing the two best Nsp13 
binders. 
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Figure 2: Computational workflows used in CACHE #2 
 
 
Compounds were drug-like and chemically diverse 
 
In Round 1, each team was asked to select up to 100 in-stock or make-on-demand 
compounds from the Enamine catalog, leading to a collection of 1957 compounds quite 
evenly distributed between participants (61 to 97 compounds each, Figure 3a). 
Participants were also encouraged to use badapple 
(https://datascience.unm.edu/badapple/) to filter out promiscuous compounds15, though 
doing so was not mandatory. Overall, compounds displayed drug-like properties, as 
reflected by the distribution of their Lipinski descriptors16 (Figure 3b). While three of the 
four fragments crystallized in the RNA site of Nsp13 included a carboxylic acid attached 
to a ring, compounds were diverse, as illustrated by a pairwise distance matrix of 
Tanimoto distances based on ECFP4 Morgan fingerprints calculated with RDKit (Figure 
3c). Chemical diversity was also observed within selections from each team, with rare 
exceptions, outlined by darker squares along the diagonal of the distance matrix.  
 
Only 20 compound pairs selected from different participants had a Tanimoto distance of 
0.3 or lower, based on ECFP4 fingerprints. Not surprisingly, all closest analogs selected 
by different participants (Figure 3d) were also close analogs of the crystallized 
fragments found in the PDB (Figure 1), however none of these were ultimately 
confirmed experimentally. Indeed, in the previously reported fragment screen by 
crystallography, Nsp13 crystals were soaked in 50 mM fragments solutions5, which can 
lead to the capture of fragments that are too weak to be detected by SPR (maximum 
concentration of 200 µM). Yet, crystallographically captured fragments were 
successfully grown into 20-40 µM hits, as detailed below. 
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Figure 3: Drug-likeness and chemical diversity of 1957 Round 1 compounds. (a) 
Number of compounds tested in Round 1 and advanced to Round 2 for each 
participant. (b) Chemical descriptors distribution of Round 1 compounds. (c) Pairwise 
Tanimoto distance matrix, using ECFP4 Morgan fingerprints from RDKit (compounds 
are ordered based on the selected teams). (d) closest analogs selected by different 
participants. MW: molecular weight; PSA: polar surface area; HBD: hydrogen-bond 
donors; HBA: hydrogen-bond acceptors; ROTB: rotatable bonds; TD: Tanimoto 
Distance. 
 
Experimental testing of Round 1 compounds 
 
Helicases are complex and structurally dynamic enzymes that couple ATP (or other 
nucleotides) hydrolysis at one site with RNA or DNA duplex unwinding at another. Given 
that the fragments in the targeted Nsp13 structure (PDB codes 5RLH, 5RLZ, 5RML, and 
5RMM) bound to full-length Nsp13 in the absence of ATP or RNA5, a similar form of the 
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protein was used in a surface plasmon resonance (SPR) assay to measure the direct 
binding of the 1957 Round 1 compounds to the full-length protein (Table S2). Nsp13 is a 
core component of the replication-transcription complex that also includes the viral 
RNA-dependent RNA polymerase (RdRp)10, but the isolated protein was used in the 
assay for two reasons: first, fragments in the PDB were bound to the isolated monomer, 
and second, binding to RdRp would have obscured the results. All compounds were 
also tested in an ATPase assay (Table S2), but we saw no correlation between SPR 
and ATPase assays and decided to rely on direct binding (SPR) to advance compounds 
to Round 2. Indeed, false positives in the ATPase assay that may bind to other 
assay-specific molecular components should be true negative in SPR, while true 
positives binding the RNA site in the SPR assay may not inhibit the ATPase activity. We 
also cannot discount the possibility that SPR hits may bind at unexpected and 
functionally neutral sites.  
 
All compounds were tested at 50 µM in both assays. 300 compounds had acceptable 
SPR sensorgram profiles with a binding signal above 50% of the expected signal 
(based on the amount of protein captured on the SPR streptavidin chip), and were 
advanced to dose-response by SPR. Another 54 compounds that inhibited the ATPase 
activity by 40% or more at 50 µM were selected for SPR dose-response. Dose response 
measurements were conducted on the resulting 354 compounds by SPR, as well as on 
96 compounds in the ATPase assay. Binding to WDR5, an unrelated protein, was also 
measured by SPR for selected hits to flag non-specific binders. Compounds of interest 
with signs of poor solubility or aggregation (<80% detected laser power at 100 µM) as 
measured by dynamic light scattering (DLS) were also flagged but were not dismissed 
to avoid false negatives (Table S2). Indeed, unlike a typical drug discovery program, no 
active compound should be left behind in CACHE, as this would defeat the purpose of 
evaluating the efficiency of computational predictions. In the end, 46 compounds 
selected by 18 teams had a KD < 150 µM, a binding signal between 30% and 150% of 
the expected signal, and were advanced to Round 2 (Figure 4, Table S2). While most hit 
rates were between 0 and 3%, workflows WF1454, WF1418 and WF1456 had 
significantly higher hit rates (9%, 8% and 7% respectively). The overall Round 1 hit rate 
was 2.3%. 
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Figure 4: Experimental evaluation of CACHE #1 Round 1 compounds. Binding to Nsp13 
measured by SPR and ATPase activity inhibition was used to advance compounds to 
Round 2. 
 
Selection and Experimental Testing of Round 2 Compounds 

The goal of the second round was to build confidence in advanced hits by 
experimentally verifying that their chemical analogs were also binding to the target. 
Compounds associated with experimental orange flags, such as signs of aggregation or 
poor solubility, were advanced to Round 2 to avoid false negatives and unfairly 
discounting computational methods. Seventeen teams selected up to 50 analogs of 
their Round 1 compounds of interest (compounds showing a binding signal by SPR), 
leading to 618 Round 2 molecules that were screened at 50 µM in an SPR binding 
assay, followed by dose-response and measurements of aggregation and solubility, as 
in Round 1 (Tables S3, S4). Compounds were also tested in an ATPase assay (Tables 
S5 and S6 respectively), and no correlation was observed with SPR data, as in Round 
1. 19F-NMR was used as an orthogonal binding assay for fluorinated molecules. 
 
Multiple chemical series emerged from this exercise (Table 1, Figure 5, and 
Supplementary material). 
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Figure 5: Top six chemical series identified in Round 2. Activity of the parent molecules 
and experimental data from Round 2 analogs are shown, including SPR sensorgrams 
and 19F-NMR spectra. Computational workflow IDs are encoded into compound names. 
 
Thirteen of the high ranked compounds as well as compound derivatives that scored 
lower but exhibited high binding affinity by SPR were further assayed for inhibition of 
double-stranded RNA unwinding activity in a FRET-based assay. Two compounds were 
found to potently inhibit Nsp13 helicase activity (CACHE2-HO_1431_6: KD 770 nM ± 
180, unwinding IC50 8.6 µM ± 1.7; CACHE2-HO_1454_15: KD 31 µM ± 0.7, unwinding 
IC50 57 µM ± 2). Inhibition of dsRNA unwinding by CACHE2-HO_1431_6 was also 
confirmed in a gel-based unwinding assay with CACHE2-HO_1454_15 partially 
inhibitory, consistent with CACHE2-HO_1431_6 having a more potent unwinding activity 
and stronger binding affinity and lower IC50 value. (Figure 6). Note that many 
compounds in this series have an ester group linker that is likely to be hydrolyzed in 
cells and represents a serious medicinal chemistry liability, which penalized the final 
score of this chemical series. However, modifying the ester linker to a more stable group 
could easily address this liability while conserving potency. But this medicinal chemistry 
work is beyond the scope of the CACHE study. 
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Figure 6: Two compounds inhibited RNA duplex unwinding. Out of the 13 most potent 
compounds in the SPR assay (Table S7), CACHE2-HO-1431_6 and 
CACHE2-HO_1454_15 had measurable IC50 values in a FRET-based RNA unwinding 
assay (a),- and had a detectable inhibitory effect in a gel-based RNA unwinding assay 
when added at 1 mM (b).  
 
Evaluation of experimental data and computational workflows 
 
The biophysical data and structure-activity relationship (SAR) of Round 1 hits and their 
Round 2 analogs were evaluated by an independent Hit Evaluation Committee 
composed of industry experts in biophysics, medicinal chemistry and computational 
chemistry (Table S1), leading to a final score assigned to each Round 1 hit (Table S8). 
Overall, 13 compounds had a score greater than 10 (Table 1), reflecting robust 
experimental confirmation, which corresponds to a hit rate of 0.7%.  
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Table 1: 13 Compounds with a score greater than 10 
 

 
 
The computational workflows of CACHE #2 participants were then evaluated based on 
the aggregated score of Round 1 compounds, and based on the best scoring Round 1 
molecule (Figure 7a,b, Table S9). In a separate evaluation scheme, all participants were 
asked to predict Nsp13 ligands from the merged collection of 1957 Round 1 compounds 
before the experimental data were generated. The aggregated score of predicted hits, 
normalized based on the number of hits predicted, was used to rate the computational 
workflows (Figure 7c). This scheme is complementary as here, all teams predicted hits 
from the same library, while in Rounds 1 and 2, participants screened compound 
collections from the Enamine catalog that may vary widely in size to best align with their 
computational methods and resources.  
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Figure 7: Scores of CACHE2 participants. For each team, the aggregated score of all 
Round 1 hits (a) or the score of the best Round 1 hit (b) selected from the Enamine 
Real library is plotted. (c) Normalized score when predicting active molecules from the 
1957 Round 1 compounds (calculated as the aggregated score of all compounds 
predicted active divided by the number of compounds predicted active). The score of 
each molecule was assigned by the CACHE Hit Evaluation Committee (Table S1).   
 
While these combined metrics provide a complete evaluation of computational 
workflows used in CACHE #2, a list of six well-performing workflows was compiled for 
further analysis, including WF1454 and WF1456, which had the best two aggregated 
scores, WF1414, WF1448, and WF1419 which predicted the three best scoring 
chemical series, and WF1438 that did best in predicting hits out of the 1957 Round 1 
compounds (Figure 8). Importantly, absence from this selection focused on 
top-performing computational pipelines does not imply that a workflow failed.  
 

 
Figure 8: Best performing workflows. (a) Group, workflow ID, and associated ranks in 
three evaluation schemes. (b) Schematics of the computational workflows. 
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Trends and strategies from the best performing computational workflows 
 
Most of the best scoring compounds were docked to the RNA binding groove, at the site 
occupied by fragments found in PDB structures 5RMM, 5RLZ and 5RLH, the target site 
defined for this CACHE challenge (Figure 9).  An exception is CACHE _1454_98, which 
is predicted to occupy an unrelated binding pocket. In this workflow (WF1454), 
compounds were docked onto a receptor grid spanning most of the target protein. Six of 
the eight Round 1 compounds from WF1454 that advanced to Round 2 occupied the 
RNA-binding groove, one the ATP site and one (CACHE _1454_98) an unrelated site. 
While top hits from other workflows occupy the expected site, they do not share 
pharmacophoric features or conserved interactions. CACHE_1414_40 was obtained 
from growing the crystallized fragment found in the PDB structure 5RMM (Figure 1) and 
is predicted to loosely overlap with the bound fragment.  
 

 
Figure 9: Docked poses of top compounds. The docked poses of some of the best 
scoring CACHE #2 hits (right) compared with the crystal structure of fragments found in 
the PDB (left). RNA from a superimposed cryo-EM structure shown in blue (PDB code: 
7RDY). CACHE_1454_98 was docked to an alternate site. 
 
The six best-performing workflows (Figure 8a) can be divided into three groups (Figure 
10). WF1414 and WF1438 both adopted strategies where fragments from the PDB were 
gradually grown and commercial analogs identified along multiple iterative cycles but 
their implementations were drastically divergent: WF1414 relied on citizen scientists and 
the gaming interface provided by Foldit to grow fragments, followed by RosettaLigand13, 
a physics-based docking tool, and BCL-AffinityNet, a feed-forward deep neural network, 
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for final scoring14; WF1438 used FEgrow17 to enumerate fragments in the binding pocket 
based on a hybrid machine learning (ML) / molecular mechanics energy function 
leveraging the ANI neural network potential18 for ligand energetics, and final evaluation 
with the convolutional neural network scoring function GNINA19. 
 
Another selection strategy adopted in workflows WF1456 and WF1454 was to dock a 
small and diverse library with GNINA19 or Vina20, respectively, to initiate iterative active 
learning cycles where a ML model is trained on a small set of docking scores to predict 
ML-scores for billions of commercial compounds, and where ML-scores are used to 
select the next small subset for docking and refinement of the ML model. In WF1454, 
the selection was further refined with a round of consensus scoring. 
 
Finally, WF1448 and WF1419 implemented a more direct approach where a large and 
diverse library was docked with pharmacophore constraints followed by orthogonal 
re-scoring. WF1448 used purely physics-based approaches for docking (Glide) and 
Scoring (HYDE), followed by visual inspection and selection of top compounds by both 
computational and medicinal chemists. WF1419 used the popular open-source software 
Vina20 for docking combined with ML/deep learning scoring functions RF-Score-VS21 
and SCORCHs22. 
 
Overall, five of the top six performing workflows combined physics-based and ML 
techniques. All five workflows used ML to score docked poses, and two (WF1454 and 
WF1456) used ML to accelerate screening within active learning cycles. A more 
conventional, purely physics-based approach (WF1448) also proved successful, 
demonstrating that well-established physics-based virtual screening techniques remain 
competitive when deployed by experienced computational chemists. While only 22% of 
the workflows (five out of 23) used in Round 1 explicitly accounted for protein flexibility 
using conformational ensembles (WF1419, WF1422, WF1447, WF1448) or flexible 
docking (WF1414) (Figure 2), they represented 50% of the most successful workflows 
(three out of six) (Figure 10). Considering the well-known conformational dynamics of 
helicases23, including Nsp135, accounting for receptor flexibility may indeed have 
increased chances of success. 
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Figure 10: Classification of most successful workflows. Computational workflows are 
classified based on hit-prediction strategies. Computational steps using 
machine-learning are highlighted in blue. Software names are shown in italic.   
 
 
DISCUSSION 
 
In CACHE #2, computational teams were asked to find molecules that target a pocket 
occupied by fragments in the PDB, a common challenge successfully met by the COVID 
moonshot initiative that targeted the SARS-CoV-2 protease24, which could also be 
undertaken for other targets. In our challenge, the crystallized fragments were weak and 
had no measurable binding affinity by SPR (data not shown). Only eight out of 23 
computational teams explicitly used the bound fragments in their selection strategy, and 
two of these were among the most successful workflows (Figures 8b and 10). This 
shows that rationally optimizing crystallized fragments remains a challenging exercise 
that requires further developments before it can be reliably applied. Considering the 
multitude of targets with bound fragments in the PDB, including those taken to fragment 
screening by crystallography25, technological development in this area of computational 
design could be impactful. 
 
A main goal of CACHE is to highlight computational strategies that repeatedly perform 
well within a challenge or across multiple targets. Interestingly, using physics-based 
docking data on a relatively small library to train a ML model that can then be used to 
efficiently navigate a much larger chemistry space was a winning strategy both in 
CACHE #1 (WF1193 and WF1209)3 and CACHE #2 (WF1454 andWF1456) (Figure 10). 
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Among the dozens of commercial and open-source computational tools used by 
CACHE participants, the convolutional network scoring function implemented in 
GNINA18 was found in one winning workflow in CACHE #1 (WF1181) and in two in 
CACHE #2 (WF1438 and WF1456), strongly suggesting that this software is robust 
across two targets absent from training sets (no ligand with measurable binding affinity 
was previously known for either CACHE target). Fragment-based techniques linking 
docked fragments in CACHE #1 (WF1183 and WF1202) or growing crystallized 
fragments in CACHE #2 (WF1414, WF1421, and WF1438) also define a recurrently 
successful approach to computational ligand design. Workflow WF1414 is a distinct 
variation on this theme in that it relies on the design of citizen scientists who use a 
gaming interface to grow fragments in a binding pocket after which designs are 
evaluated with RosettaLigand. Combining human creativity with tools such as 
RosettaLigand may indeed be a recipe for success.   
 
Only one of the CACHE participants explicitly included the visual inspection and 
subjective judgment of medicinal chemists as a final step in their selection strategy 
(WF1448). This step is common practice in virtual screening and should be better 
tracked in the future. Indeed, in its current set-up, CACHE evaluates not only 
computational methods but also the intuition and expertise of humans running these 
tools. The most seasoned computational chemist will be hard pressed to subjectively 
select hits out of a failed computational workflow. We would therefore argue that 
experimentally confirmed hits can only reflect successful computational workflows. 
Nevertheless, there would be some merit in requesting a more detailed description of 
human intervention from CACHE participants,  including asking them to provide 
“computer-only” selections in addition to their final, human-selected sets (if any), at the 
risk of spending resources on testing compounds that do not pass the subjective 
evaluation of experts. 
 
We observed a significant improvement in binding affinity for only one chemical series 
where two analogs (CACHE2-HO_1421_29 and CACHE2-HO_1421_27) showed a 
3-fold increase in binding affinity compared with the Round 1 hit (CACHE_1421_62). 
The other exception is CACHE2-HO_1431_6 but it is a very distant analog of the parent 
molecule. The limited improvement seen in Round 2 may reflect a limitation in the 
commercial availability of analogs. Indeed, dedicated chemistry is typically preferred for 
the design of highly customized molecules. A mechanism to mitigate this effect could be 
to focus Round 1 screening on compounds richly derivatized in commercial catalogs. 
We expect that such an approach will become more attractive in the future, as 
commercial libraries keep growing. 
 
 
CONCLUSION 
 
Retrospective benchmarking exercises are critical to compare predictive computational 
methods1,26–28 and carefully assembled datasets play a central role for example to 
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evaluate docking, virtual screening or free energy perturbation methodologies29–35. While 
the value of these resources is generally well appreciated among computational 
chemists and data scientists, one may be surprised to see new ML-driven virtual 
screening tools being published every month that perform better than “all others” when 
tested for example on the PoseBusters dataset29. Skeptical data scientists may wonder 
whether data leaked between training, test and validation sets while seasoned 
drug-hunters and experimentalists may refer to the old Danish proverb saying that “It is 
difficult to make predictions, especially about the future”.  
 
In CACHE #2, 23 computational teams were challenged to prospectively predict ligands 
for the RNA binding site of SARS-CoV-2 Nsp13, a binding pocket with no known 
drug-like ligand. Testing the predicted compounds experimentally yielded a low hit rate 
of 0.7 %, indicating that a breakthrough in computational hit finding where bioactive 
molecules are reliably designed in silico remains to be seen. Strikingly, the highest 
scoring prediction in CACHE #2 was a compound manually designed by citizen 
scientists using the Fold-it online interface and further prioritized by physics and 
ML-based computational tools (WF1414), emphasizing the value of human intervention 
in the design process. Computational hit finding strategies and tools recurrently 
successful across the first two CACHE challenges define emerging trends that may 
inform the community when constructing hit-finding computational pipelines.  To the best 
of our knowledge, the thirteen compounds confirmed experimentally are the first with a 
measurable binding affinity expected to engage the RNA binding site of Nsp13. 
Considering the exceptionally high conservation of this site6 and its central role in the 
essential replication-transcription complex10, molecules discovered in CACHE #2 
provide valuable chemical starting points for future medicinal chemistry exploration.  
 
METHODS 
 
Computational workflows 
Computational methods are available from 
https://cache-challenge.org/results-cache-challenge-2  
 
Protein expression and purification 
DNA fragments encoding SARS-CoV-2 Nsp13 residues A5325-G5925 were amplified 
via PCR and sub-cloned into the pFBD-BirA expression vector. The insert was 
positioned downstream of the AviTag for in vivo biotinylation and upstream of a HisTag.  
The resulting plasmid was transformed into DH10Bac™ competent E. coli (Invitrogen) 
and a recombinant viral bacmid DNA was purified and followed by a recombinant 
baculovirus generation for baculovirus mediated protein production in Sf9 insect cells. 
Biotin was added to the medium at a final concentration of 10 μg/mL. Cells were 
harvested by centrifugation at low speed (2500 rpm for 10 minutes at 4 °C in a 
Beckman Coulter centrifuge) when cell viability dropped to 70-80%. The cells were 
resuspended in extraction buffer (20 mM Tris-HCI, pH 7.2, 500 mM NaCl, 5% glycerol, 5 
mM Imidazole + 1 ml PI cocktail (Aprotinin, Leupeptin, Pepstatin A, and E-64) and lysed 
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chemically by adding NP40 (final concentration of 0.5%) and 5 µl/L Benzonase 
Nuclease (in-house) followed by sonication at the frequency of 7.0 kHz (5” on/17” off) 
for 3 min (Sonicator 3000, Misoni). The crude extract was then clarified by high-speed 
centrifugation (60 min at 36,000 ×g at 4 ˚C) in a Beckman Coulter centrifuge to remove 
the cellular debris. The clarified lysate was first sent through a Ni-NTA resin column 
followed by passage through Gel filtration HiLoadTM 26/600 Superdex (Cytiva) with 50 
mM Tris, pH 7.2, 200 mM NaCl, 5% glycerol, 0.5 mM TCEP to enrich nsp13_SARS2 to 
95% purity. Following the identification of the protein eluting fraction and purity using 
SDS-PAGE gels, and mass confirmation, the fractions were pooled, concentrated, 
snap-frozen, and stored at -80 0C until use. Protein mass was confirmed by LC-MS. 
 
Surface Plasmon Resonance (SPR) 
The assay was conducted using a Biacore™ 8K (Cytiva) at 20 °C. Biotinylated 
Nsp13_SARS2, with approximately 4900-5100 response units (RU), was immobilized 
onto the flow cell two of a streptavidin-conjugated streptavidin chip following the 
manufacturer’s protocol. The flow cell one served as a reference for subtraction for each 
channel. Compounds were initially dissolved in 100% DMSO to create 10 mM stock 
solutions, which were subsequently serially diluted (factor: 0.5) to obtain six 
concentration points in 100% DMSO. For the SPR run, these serially titrated compound 
stocks were diluted at the ratio 1:50 in HBS buffer, containing Mg2+ (10 mM HEPES pH 
7.4, 150 mM NaCl, 5 mM MgCl2, 0.03% (v/v) Tween 20) to achieve a final  DMSO 
concentration 2%. Binding experiments used multi-cycle kinetics with a contact time of 
60 seconds and a dissociation time of 180 seconds at a flow rate of 40 µL/min at 20 °C. 
The dissociation constant (KD) values were determined using steady-state affinity 1:1 
binding with the Biacore™ Insight Evaluation software (Cytiva). 
 
Dynamic Light Scattering  
The solubility of compounds was estimated by DLS that directly measures compound 
aggregates and laser power in solution. Compounds were serially diluted directly from 
DMSO stocks, then diluted 50x into filtered 10 mM Hepes pH7.4, 150 mM NaCl, 5 mM 
MgCl2, 0.03% Tween20 (2% DMSO final). The resulting samples were then distributed 
into 384-well plates (black with a clear bottom, Corning 3540), with 20 μL in each well. 
The sample plate was centrifuged at 3500 rpm for 5 min before loading into DynaPro 
DLS Plate Reader III (Wyatt Technology). 
 
ATPase activity 
The level of ATP consumed by Nsp13 was quantified by measuring the amount of 
remaining ATP using a luciferase-based assay as previously described36. The inhibitory 
effects of compounds were assessed in 384-well format (14 μL final volume) using 
reactions composed of 50 mM HEPES, pH 7.5, 5% Glycerol, 5 mM magnesium acetate, 
5 mM DTT, 0.01% Triton X-100, 0.01% BSA, 0.1 nM Nsp13, 3.5 nM 30b PolyT ssDNA, 
2.5 µM ATP, and 2% DMSO. Samples containing DMSO only (no compounds) were 
used as a control. Reactions were started by the addition of substrate and incubated for 
60 min at room temperature. Then, 10 μL of the reactions were transferred into 384-well 
white plates containing 10 μL luciferase reagent (Cat# V6712; Promega, Madison, WI, 
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USA) and incubated for another 20 min at room temperature. Compounds that were 
followed up for dose-response experiments were tested using the same luciferase 
reagent, and the data were analyzed using GraphPad Prism 9. 
 
19F-NMR Spectroscopy 
The binding of fluorinated compounds was assayed by assessing the broadening and/or 
perturbation of 19F resonances upon addition of Nsp13 (at protein to compound ratios of 
2:1 to 3:1) in PBS buffer (pH 7.4, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 
KH2PO4, and with 5% D2O). 1D-19F spectra were collected at 298 K on a Bruker 
AvanceIII spectrometer, operating at 600 MHz, and equipped with a QCI probe. Two to 
four thousand transients were collected with an acquisition period of 0.2 s, over a sweep 
width of 150 ppm, a relaxation delay of 1.5 s, and using 90° pulses centered at −120 
ppm. The concentration of the compounds in both reference and protein-compound 
mixtures was10 μM. TFA (20 μM) was added as an internal standard for referencing. 
Prior to Fourier transformation, an exponential window function was applied (lb = 1 to 3) 
to the FID. All processing was performed at the workstation using the software Topspin 
3.5. 
 
Unwinding assays 
The FRET-based dsRNA unwinding assay using recombinant nsp13 purified from E. 
coli and gel-based dsRNA unwinding assay using mammalian cell expressed proteins 
were conducted as previously described using custom dsRNA templates obtained from 
International DNA Technologies37.  
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