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Abstract 

Chemicals serve pivotal functions in many commercial and consumer products. To manage chemicals 

and their impact on the environment, chemical risk assessment (CRA) and material flow analysis (MFA) 

are employed. However, challenges arise in accessing data, particularly in the end-of-life (EoL) stage of 

products. This perspective manuscript explores how software and data systems can facilitate CRA and MFA 

at the EoL stage. This contribution reviews regulatory data sources like the Pollutant Release and Transfer 

Registers, information extraction from academic data via natural language processing, and real-time data 

to improve understanding of the EoL supply and management chain. Additionally, the manuscript 

discusses the application of graph neural networks and transfer learning techniques to improve the 

representation and performance of EoL supply chain models.  
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1. Introduction 

Chemicals are essential components of commercial products like batteries and industrial lubricants. 

However, certain uses of hazardous chemicals can pose an unreasonable risk to human health and the 

environment through their entire life cycle. Chemical risk assessment (CRA) is a method used to make well-

informed decisions, choose compounds with safer characteristics, and develop and implement strategies 

to eliminate or decrease chemical risks[1]. 

Material flow analysis (MFA) quantifies and allocates material movement (e.g., chemicals) in 

production systems, releases, and ecosystems[2]. In CRA, MFA helps assess chemical risk and exposure. It 

assists in determining the receptors (e.g., workers) that may be exposed to a chemical in the work 

environment and the quantity of releases into the environment. MFA also identifies scenarios that may 

result in  human and environmental exposure[3]. 

The data acquisition for MFA and CRA historically has been difficult due to data quality and 

accessibility[4, 5].  The growing amount of chemicals manufactured and brought into the worldwide market 

and the global integration of the chemical supply chain make this particularly concerning[6].  End-of-life 

(EoL) management is complex due to uncertainty about the quantity and pathway taken by a chemical and 

a dearth of data to assess chemical exposure which is why CRA sensitivity assessments are generally 

insufficient[7–9]. 

Artificial intelligence (AI) and information technology (IT) systems transformed the chemical industry, 

chemical engineering, sustainability, and life cycle assessment through digitalization[10–14]. Thus, this 

manuscript shows how digitalization may streamline of MFA and CRA at chemical EoL. The topics examined 

in this study encompass a data-centric approach, where the quality and accessibility of data improve over 

time (see Figure 1). 
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Figure 1. This figure presents the machine learning life cycle applied to Chemical risk assessment (CRA)and material flow analysis 
(MFA)at the end-of-life (EoL) stage. It integrates data sources, including regulatory databases and information extraction tools, 
feeding into advanced artificial intelligence (AI) models such as Deep Neural Networks (DNNs), Graph Neural Networks (GNNs), 
and Generative Adversarial Networks (GANs). These models support analysis and predictions related to exposure pathways and 
regulatory compliance. The framework highlights how these tools collaboratively enable a data-driven approach to effective EoL 
chemical management. 

2. End-of-life chemical data availability 

2.1. Regulatory data sources 

High-performance AI models require domain-specific data to extract “knowledge” about the EoL 

supply and management chain’s behavior through data patterns. Regulatory database systems can help 

collect facility-level EoL and chemical release data. The Pollutant Release and Transfer Registers (PRTRs), 

an international publicly accessible database system created by the Organization of Economic Co-

https://doi.org/10.26434/chemrxiv-2025-06rq4 ORCID: https://orcid.org/0000-0003-2652-1405 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2025-06rq4
https://orcid.org/0000-0003-2652-1405
https://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

operation and Development (OECD), provides data on the releases of toxic chemicals into the air, water, 

and land by industrial facilities and transferred off-site for treatment[15]. Also, the OECD uses the PRTR to 

evaluate progress towards the United Nation’s twelve sustainable development goal, which promotes 

sustainable consumption and production practices[16, 17]. 

The PRTRs from Australia, Canada, and the USA provide individual chemical transfer data[18–20]. These 

publicly access databases depict EoL management scenarios with greater quantitative and qualitative 

detail. The off-site material transfer report is done by chemical for all EoL scenarios, which support AI 

models performance because the risk of bias is lower than with other PRTRs reporting aggregated EoL 

material transfer amounts by whether the transferred material is a hazardous waste instead of informing 

the constituent chemicals[21]. 

The USA PRTR, also known as the Toxics Release Inventory (TRI), is highly granular, allowing data 

engineering incorporation into environmental impact assessment applications. US government entities 

use TRI in developing environmental input-output life cycle assessment models[22]. It helps track chemicals 

through the EoL supply chain and identify waste brokering and intermediaries[23]. It also provides statistics 

on on-site EoL management operations, potential pollution abatement technologies (e.g., steam 

stripping), and abatement efficiencies[24].  Also, TRI integration with other data sources supports the design 

and evaluation of potential chemical circular economy scenarios[25]. 

CRA sensitivity analysis can use regulatory data sources to reflect worst-case environmental release 

scenarios despite reporting quantity thresholds, EoL material industry sector generator, and chemical 

species[23]. As part of data and AI modeling, these data sources can be integrated into a data-centric 

framework, where the systematic procedure remains unchanged while the sample data size (e.g., 

chemicals, threshold values, reporting facilities, etc.) and quality increase over time[26]. Thus, data 

engineering pipelines can merge data silos to measure the influence of environmental regulatory 
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stringency and economic feasibility on the EoL supply chain across countries and time[21], expanding the 

AI model domain[26]. 

 

 

 

Figure 2. An overview of the chemical life cycle stages and environmental exposure pathways, showing recycled and end-
of-life (EoL) material flows (top), and transport between environmental release compartments (bottom) via mass transfer 
processes like runoff, leaching, and volatilization. 

However, PRTR systems, including TRI, encompass no more than 770 chemicals. 

This is a difficult scenario given the continually rising prevalence of toxic and hazardous chemicals. The 

Toxic Substance Control Act (TSCA) inventory in the US lists more than 86,000 chemicals. Approximately 

2,000 new chemicals are introduced annually in the US. Also, around 2,500 chemicals in the TSCA inventory 

are classified as high production volume (HPV), with nearly 45 % of these HPV chemicals lack sufficient 

toxicological studies to assess their health impacts on humans and wildlife[27].  
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CRA requires the collection of potential exposure scenarios across various life cycle stages, including 

EoL. It also involves tracking chemical movements between these stages. This process must include 

detailed data on chemical releases into environmental compartments and transport between them. 

Additionally, environmental fate factors must be considered, such as biodegradation, bioaccumulation, 

chemical transformation, and environmental persistence (see Figure 2). It is crucial to develop strategies 

for the automatic data collection and management. This will expand the applicability of datasets used in 

training data-driven models.  

2.2. Information extraction 

Regulatory data sources can provide the EoL supply chain elements like generator/waste handler 

industry sectors, inter-industry sector transfer amount, and EoL activities. But, these data sources have 

limitations such as being designated as confidential business information, a limited range of regulated 

substances and industrial sectors/activities, data granularity, and annual report cycle requirements[21]. 

Information extraction (IE) may be used to increase dataset size for AI modeling. Computer programs that 

scrape webpages for data identification and collection are one example. Web scrapers have been used in 

epidemiology research and public health planning[28], chemical hazards attributes and physical 

properties[24, 25, 29], textile data extraction for forensic science[30], and the pharmaceutical industry 

medicament requirements analysis based on prevalent diseases[31]. However, web scraping may be illegal 

in some jurisdictions and prohibited by website owners[28]. 

Moreover, AI models can go beyond predicting EoL activities and supply chain constituents. Natural 

language processing (NLP) can be used in data engineering pipelines to catalog EoL-related academic 

papers and extract information from portable document format (PDF) files[32]. IE systems have used NLP 

models to automatically label a corpus including superalloy names and property values for materials 

research[33]. In toxicology, NLP-based EI systems have help construct biological response pathways from 

literature. This advances non-animal toxicology research[34]. An NLP-based IE system helped create a 
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framework that automatically examines and extracts incidents reports. The framework generates risk 

matrices and analyzes failure modes and effects to address wildfire damage[35]. 

Large language models (LLMs), a subset of NLP models, have gained attention for their ability to 

understand and generate text across diverse conditional tasks. LLMs are particularly effective in IE through 

prompt-based instructions, including from scientific texts[36, 37]. They are valuable for IE tasks in data 

engineering pipelines for MFA and CRA during the EoL stage. LLMs have proven useful in extracting 

materials science knowledge from peer-reviewed articles, including phase-property relationships in 

aluminum alloys and aiding alloy design[35, 38]. They are also valuable in chemical fields for tasks like 

compound entity recognition, reaction role labeling, and building databases of thermally activated 

fluorescent molecules [39]. 

2.3. Data augmentation 

In cases of EoL data scarcity, which can cause overfitting or imbalance data for classification learning 

tasks, data augmentation can improve AI model performance. Data augmentation creates more training 

data using inherent patterns in existing data[40]. Previously, synthetic minority over-sampling technique 

(SMOTE) and multilabel SMOTE (or MLSMOTE) were used for classification learning in the context of MFA 

during the EoL stage[26].  

Moreover, data augmentation was used in chemical reaction prediction to improve the synthesis 

planning of reaction templates and reaction-based molecule optimization. The reaction data was 

supplemented with template applicability information[41]. Other uses of data augmentation include 

altering functional groups inside molecules to generate synthetic data and improve chemical reaction 

predictions[42]. Also, data augmentation is used in chemical process design to digitize chemical process 

flowsheets by randomly changing branches[43]. 

Advanced deep learning techniques can find patterns in data and generate artificial sample data for 

CFA and CRA at EoL. For example, AI models have been improved to predict protein sequence solubility 
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using deep learning techniques inspired in generative adversarial networks (GANs)[44]. GANs also predict 

supercritical water gasification in hydrogen production[45]. Conditional GANs augment data of corrosion 

generated in industrial process pipelines[46]. In biology and other fields, advanced models like the 

generative pre-trained transformer 4 (GPT-4) have improved predictive modeling[47]. 

3. Evolution of data-driven models’ architecture 

In cheminformatics and CRA, data-driven toxicity prediction models inspired in quantitative structure-

activity relationship (QSAR) models are common. QSAR models quantitatively correlate molecular 

structure descriptors with response variables like the water-ethanol partition coefficient[48]. Combining 

traditional AI tree-based models with QSAR models to understand the EoL supply and management chain 

can yield high-performance models powered by regulatory datasets[26]. When developing a QSAR model, 

tree-based algorithms can explain how each model contributes to the response variable prediction. 

CRA and MFA can use state-of-the-art AI algorithms to capture more complex data patterns, but model 

explainability is important. Researchers have used QSAR and deep neural networks (DNNs) in CRA and 

drug development[49]. AI models that predict chemical toxicity in rats and mice have also used this 

modeling synergy to reduce the need for in-vitro animal trials for hazard assessment[50]. Using previously 

learned knowledge in related tasks, transfer learning improves DNNs performance. Transfer learning has 

been evaluated for chemical process design using reinforcement learning in process system 

engineering[51]. Transfer learning has also been applied to predict chemical properties using deep graph 

neural networks (GNNs)[52]. 

DNNs can be used in conjunction with explainable AI (XAI) to evaluate AI models. XAI helps 

stakeholders who are not computer scientists understand and rely on AI model outputs[53]. DNNs and QSAR 

have been used in estimating fish bioconcentration factor research. By adding XAI, researchers were able 

to score molecules’ moieties that most affect bioconcentration factor prediction[54]. Also, XAI has been 
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used in supply chain management and analysis to improve explainability by combining DNNs and logic-

based reasoning[55].  Thus, DNNs and QSAR could model the EoL supply and management chain for MFA 

and CRA. In summary, XAI could help stakeholders and decisionmakers to prioritize modeling variables 

(e.g., industry sectors, physical properties), while transfer learning could improve QSAR-inspired model 

predictability. 

GNNs have become more popular in chemoinformatic research, including QSAR modeling. This AI 

model architecture can manage graph-structured data and learn complex topological relationships. QSAR-

inspired GNN algorithms predict synthetic compounds toxicity, environmental behavior, and 

physiochemistry[56]. GNN is useful for EoL supply chain analysis due to its edge-, node-, or full graph-level 

prediction.  Edge-level GNN predicts hidden linkages and tracks goods and information from suppliers to 

consumers[57]. Node-level GNN has also been used to classify companies by industry sectors[58]. GNN can 

introduce edges and links attributes that connect with regulatory and economical constrains, e.g., if an off-

site transfers could be considered for legitimate recycling or waste-to-energy under local environmental 

regulations.  
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Figure 3. An examination of integrating information systems to depict the end-of-life (EoL) supply and management chain, as well 
as using real-world systems to gather data (e.g., internet of thing (IoT) technology) for the development of data-driven systems. 
These systems aid in comprehending and tracking the progression and dynamics of the supply chain, as well as forecasting 
potential risks to both humans and the environment. The system has the potential to undergo automatic re-optimization and re-
training in response to changes in relationships and EoL supply chain behavior, hence mitigating the decline in predictive 
performance. 
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4. Software and data systems infrastructure 

Figure 3 presents a tiered structure that encompasses the EoL supply and management chain, diverse 

data sources, and cutting-edge technologies. To understand material flow and classification, the first layer 

covers the EoL supply and management chain agents like waste handler. The second layer includes various 

data sources, including publicly available regulatory application programming interfaces (APIs) to analyze 

the EoL chain constituents. The third layer uses AI models and internet of thing (IoT) technology to analyze 

and use data sources to improve EoL supply chain decision-making, efficiency, and sustainability. 

Recent years have seen exponential growth in data systems and software infrastructure. Open-source 

initiatives make modern technologies more accessible and created an ecosystem for quickly developing 

and testing new ideas. The OECD’s QSAR Toolbox allows CRA practitioners to share research papers, 

datasets, and models for future projects[59, 60]. Other open-source QSAR modeling projects include QSAR-

Co-X for multitarget QSAR modelling[61], and MRA Toolbox for mixture risk assessment[62]. These tools can 

speed up AI model training for EoL supply chain understanding as shown in Figure 3.  DNNs can also provide 

data for new model training or transfer learning using QSAR-inspired models. 

New technologies make it easier to supply data assets, especially with the rise of AI applications and 

the data transparency and accessibility. The U.S. Census Bureau provides APIs on the country’s industry 

economy[63], the U.S. Center for Disease Control Prevention provides environmental public health APIs[64], 

the U.S. Occupational Safety and Health Administration delivers workplace injuries APIs[65], and the U.S. 

Environmental Protection Agency’s CompTox provides computational toxicology APIs[66]. Data engineering 

pipeline can combine siloed API systems as shown in Figure 3, to extract useful features for modeling the 

EoL supply chain while considering various factors. 

Also, the rise of IoT has great potential for EoL supply chain integration. The IoT uses sensors, software, 

data processing, and other technologies to simplify internet and communication network connections. IoT 
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may revolutionize EoL material management by increasing efficiency, reducing environmental impact, and 

promoting material circularity[67]. IoT may be a valuable source of real-time data that can be integrated 

into DNNs for real-time biological and non-biological EoL material categorization and sorting via computer 

vision[68]. IoT and blockchain technology have been used in the chemical supply chain to ensure traceability 

and transparency[69]. IoT and blockchain could provide real-time data for CRA and MFA. They can track 

chemicals in the EoL supply chain and use real-time data for environmental decision-making and AI 

modeling. Figure 3 shows how data can classify EoL material generators, brokers, and handlers and retrain 

AI models to maintain performance. 

Conclusion 

This contribution shows how advanced software and data systems can enhance CRA and MFA at the 

EoL stage. As shown in earlier publications [25, 26], using n-Hexane as an example, data engineering pipelines 

play a crucial role by integrating information from regulatory databases like PRTRs and TRI and extracting 

additional insights from academic and industrial documents using NLP. This combined approach allows the 

identification of specific facilities responsible for n-Hexane releases, quantities transferred off-site, 

industrial processes involved, and missing data to complete regulatory records. Such integration helps 

identify key exposure pathways, track waste flows, and analyze abatement technologies. 

ML models, including DNNs and GNNs, leverage these enriched datasets to predict exposure scenarios 

and assess risks associated with environmental parameters like bioaccumulation, volatility, and 

persistence. By uncovering patterns in chemical releases and transport, these models help estimate risks 

across the entire lifecycle of n-Hexane. XAI techniques further enhance the interpretability of model 

predictions, providing stakeholders with a clear understanding of the factors that most influence the 

model’s risk assessments. The approach promotes safer and more efficient chemical management 

practices and supports regulatory compliance. 
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Disclaimer 

The views expressed in this article are those of the authors and do not necessarily represent the views or 

policies of the U.S. EPA. Any mention of trade names, products, or services does not imply an endorsement 

by the U.S. Government or the U.S. EPA. The U.S. EPA does not endorse any commercial products, service, 

or enterprises. 
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