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ABSTRACT: Alkyl azetidines have been prepared by photochemical modifications of azetidine-2-carboxylic 

acids in batch and in flow. The reaction has been realized in mg-, g-, and even multigram quantities. The 

obtained azetidines are valuable building blocks for drug discovery. 

 Introduction. The azetidine ring has gained significant 

popularity in drug discovery campaigns over the past decade. 

Today, at least seven approved drugs contain the residue of 

azetidine (Figure 1), and dozens of other azetidine-containing 

bioactive molecules are now at different stages of clinical trials.1 

Continued adoption of this motif requires new synthetic 

methodologies enabling access to building blocks with more 

diverse functionalities. 

 

 
Figure 1. Small molecule azetidine-containing drugs.  

It is thus not surprising that significant efforts have been put 

toward the preparation of substituted azetidines.2 Most of these 

approaches, however, focus on the preparation of 3-substituted 

azetidines,2,3 whereas 2-substituted isomers are rare.4 

 

Scheme 1. Preparation of 2-substituted azeditines for medicinal 

chemistry: previous and this study. NHPI: N-hydroxyphtalimide. 

Our laboratories have been interested in applying different 

strategies towards accessing diversely substituted azetidines for 

medicinal chemistry. For example, in 2022, Pfizer reported on 

the [Ni]-catalyzed decarboxylative (hetero)arylation of the 

azetidine-containing redox-active ester to form 2-(hetero)aryl-

azetidines (Scheme 1).5 In 2023, Enamine developed the 

practical synthesis of 2-spirocyclic azetidines employing the 

formal [2+2]-cycloaddition between Graf isocyanate and 

exocyclic alkenes (Scheme 1).6  

Here, we present our collaborative studies between Enamine 

and Pfizer aimed at the direct photochemical modifications of 

azetidine-2-carboxylic acids with alkenes. This reaction has been 

realized in batch and in flow, enabling the preparation of alkyl 

azetidines for medicinal chemistry in mg-, g-, and even 

multigram quantities.  

 This is the first systematic study on the topic. 
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Scheme 2. Optimization of the reaction. Batch synthesis: azetidine carboxylic acid 1 (150 mg, 745 µmol, 1.0 equiv), 4-vinylpyridine (2) (157 

mg, 1.49 mmol, 2.0 equiv), photocatalyst (2.5 mol%, 18.6 µmol), LiOH-H2O (34.4 mg, 820 µmol, 1.1 equiv) in DMF [0.2 M]. Isolated 

yields after HPLC purification. (a) 365 nm. (b) 450 nm. (c) 660 nm. Flow synthesis: azetidine carboxylic acid 1 (1.0 equiv), 4-vinylpyridine 

(2) (1.5 equiv), 4CzIPN (2.0 mol%), LiOH-H2O (1.1 equiv) in DMF [0.2 M], 365 nm, 30 mL/min. BTMG: 1,1,3,3-tetramethylguanidine. 

PMP: para-methoxyphenyl. N.d.: not determined. 

 

 Results and Discussion. Optimization. The photochemical 

reaction between amino acids and alkenes was known.7,8 

Surprisingly, azetidine-containing substrates were not present in 

those studies. On the other hand, rare azetidine-containing 

compounds non-systematically occurred in various radical 

reactions.9,10 We thus initiated our studies by pursuing conditions 

for the direct photochemical reaction between the commercially 

available N-Boc azetidine-2-carboxylic acid (1) with a 

commercially available Michael acceptor - 4-vinyl pyridine (2). 

Optimal reaction conditions were found by varying base, 

photocatalyst, and light wavelength (Scheme 1). We found that 

utilizing (Ir[dF(CF3)ppy]2(dtbpy))PF6 in dimethylformamide 

under irradiation with 450 nm, azetidine 1 underwent the 

reaction with vinyl pyridine in the presence of multiple bases, 

such as potassium carbonate (entry 1, Scheme 2), 2-tert-butyl-

1,1,3,3-tetramethylguanidine (entry 2), potassium phosphate 

tribasic (entry 3), and lithium hydroxide monohydrate (entry 4) 

in 39%, 30%, <25%, and 76% yield, respectively. The use of 

2,4,6-collidine failed to give the product (entry 5). Changing the 

metal-containing photocatalyst to the organic one, 4CzIPN, and  

performing the reaction at 365 nm (entry 6) also provided 

product 3 with a reasonable 66% yield. Attempts to further 

change the photocatalyst to TiO2 anatase (entry 7), Ru(bpy)3Cl2 

(entry 8), acridinium photocatalysts (entry 9-11), and osmium(II) 

photocatalysts (entry 12-13) yielded little to no isolable product. 

A solvent screen aimed at replacing dimethylformamide gave 

varying results with tetrahydrofuran and acetonitrile resulting in 

decreased yields (please, see SI for full details of the 

optimization). Control experiments revealed that without light 

the reaction did not proceed (entries 14, 15). 

Scaled-up synthesis. Previously, we used the photochemistry 

in flow for the multigram scale preparation of 

bicyclo[1.1.1]pentanes for medicinal chemistry.11  Here, we 

wanted to use this knowledge for the multigram scale preparation 

of azetidines for medicinal chemistry. Therefore, having 

identified optimal batch reaction conditions (entries 4 and 6), we 

next performed the reaction in flow using the cheaper organic 

catalyst - 4CzIPN (entry 17). Pleasingly, under these conditions, 

48 g of product 3 was easily obtained in 61% yield in one run 

(Scheme 2).  
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Scheme 3. Reaction scope: variation of alkenes, and substitution at the azetidine ring. Isolated yields. Reaction conditions: aazetidine 

carboxylic acid (1.0 equiv), alkene (2.0 equiv), (Ir[dF(CF3)ppy]2(dtbpy))PF6 (2.5 mol%), LiOH-H2O (1.1 equiv) in DMF [0.2 M],  450 nm, 

18h, rt, batch. bAzetidine carboxylic acid (1.0 equiv), alkene (2.0 equiv), 4CzIPN (2.5 mol%), LiOH-H2O (1.1 equiv) in DMF [0.2 M], 365 

nm, 12-18h, rt, batch. cAzetidine carboxylic acid (1.0 equiv), alkene (1.5 equiv), 4CzIPN (2.0 mol%), LiOH-H2O (1.1 equiv) in DMF [0.2 

M], 365 nm, in flow, 20-30 mL/min. d1.2 equiv. of styrene was used. eCs2CO3 instead of LiOH. X-ray crystal structure of compound 24 

(carbon – grey, nitrogen – blue, oxygen – red, sulfur - orange). Ellipsoids are shown at a 50% probability level.
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Scope. With optimized conditions in hand, we explored the 

utility of this chemistry in accessing diversely substituted 

azetidines (Scheme 3). In studying the reaction scope, we 

allowed some flexibility using both metal-containing [Ir] and 

organic (4CzIPN) catalysts in batch. Many azetidine products 

were also subsequently prepared on scale in flow using the 

organic catalyst. 

A variety of heteroaryl styrenes, such as 2-vinylpyridine, 2-

vinylpyrimidine, 2-vinylpyrazine, and the corresponding vinyl 

thiazole underwent the addition giving azetidines 4-7 in 55-74% 

yield. Reaction with substituted styrenes also worked well to 

provide the corresponding azetidines 8-12 in good yields. As a 

demonstration of the potential utility of this chemistry, we also 

explored the reaction with 5-vinyl thalidomide, which yielded a 

new E3 ubiquitin ligase recruiter building block 13 in 28% yield. 

More traditional Michael acceptors (methyl acrylate, methyl 

vinyl ketone, etc) furnished azetidines 14-20 in 47-70% yield. 

Reaction with CH2=CHSO2F gave product 21. To the best of our 

knowledge, this is the first example of preparing sulfonyl 

fluoride directly from non-activated amino acids.12  

Reaction with vinyl sulfones, acrylonitrile, and a PO(OEt)2-

containing alkene gave the corresponding azetidines 22-26 in 29-

53% yield. The MeSO2-moiety is common within approved 

drugs,13 and in this context, the MeSO2-substituted product 22 is 

especially interesting. The structure of sulfone 24 was proven by 

X-ray analysis.14 It is also worth noting the synthesis of 

P(O)Me2-substituted azetidine 27. In 2016, the FDA approved 

the anticancer drug Brigatinib,15 and since then the P(O)Me2-

containing building blocks have become common in medchem 

campaigns.16 

Reaction with vinyl boronates gave the Bpin-substituted 

azetidines 28 and 29 in 34-45% yield.  

Various substituted N-Boc azetidine-2-carboxylic acids 

having aliphatic and ethereal functionalities also proved suitable 

in the reaction giving azetidines 30-36 in 36%-80% yield. 

Interestingly, quaternary azetidine-2-carboxylic acids underwent 

direct decarboxylative reaction with 4-vinyl pyridine to smoothly 

yield products 37 and 38 in 96% and 92%, respectively.  

 

Limitations. The developed approach towards 2-alkyl 

azetidines was not without limitations. Our conditions failed to 

give good yield with (a) intrinsically sterically hindered β-

substituted acrylates (MeCH=CHCO2Me, Me2C=CHCO2Me), (b) 

non-polarized alkenes (N-Bn maleimide, butadiene sulfone), and 

(c) electron-rich alkenes (EtOCH=CH2, 2-thiophene-CH=CH2). 

For a full list of non-reactive alkenes, please, see SI, p 29. The 

lack of reactivity of the electron-rich alkenes suggests a 

nucleophilic character of the intermediate N-Boc azetidine 

radical.17  

 

Functionalizations. With a practical and scalable protocol 

toward 2-alkyl azetidines in hand, we converted various products 

into value-added, multi-functional azetidine-containing building 

blocks (compounds with one or two functional groups) for use in 

medicinal chemistry. The standard acidic N-Boc deprotection 

gave amines “a” (Scheme 4). The structure of amine 22a was 

proven by X-ray analysis.14 Reduction of the pyridine/pyrazine 

ring with H2/Pd in methanol under heating provided diamines 

“b.”  

Saponification of the ester group resulted in the formation of 

interesting amino acids “c.” The reaction of the Bpin-compounds 

with potassium fluoride in an acetone/water mixture smoothly 

gave trifluoroborates “d.” The reaction of compound 19 with 

Me2NCH(OMe)2 led to the formation of a mixture of two  

 
Scheme 4. Synthesis of azetidine-containing building blocks for 

medicinal chemistry.  

isomeric products 19e:19f=3:1, from which the pure isomer 19e 

was isolated in 74% yield by column chromatography. The 

cyclization of 19e with hydrazine hydrate provided pyrazole 39 

in 75% yield. We also obtained the isomeric pyrazole 40 via the 

reaction of 19e+19f with hydrazine hydrate and the separation of 

the isomeric products by column chromatography. The structure 

of compound 40 was proven by X-ray analysis.14 Acidic 

deprotection of the N-Boc group formed unique isomeric 

scaffolds 41 and 42. Cyclization of 19e with hydroxylamine 

allowed isolating isoxazole 43 in 87% yield. Acidic N-Boc 
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deprotection of the latter provided scaffold 44. Condensation of 

compound 19e with guanidine smoothly afforded pyrimidine 45 

in 83% yield. 

 

 Conclusions. We have developed a unified set of conditions 

for the direct photochemical functionalization of azetidine-2-

carboxylic acids with alkenes. The reaction has been realized in 

batch and in flow allowing the rapid preparation of alkyl 

azetidines in mg-, g-, and even multigram quantities. The 

obtained products, - sulfonyl fluorides, boropinacolates, 

potassium, trifluoroborates, P(O)Me2-derivatives, PROTAC-

linkers, etc - are valuable building blocks for drug discovery.  
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Alkyl azetidines have been prepared by photochemical 

modifications of azetidine-2-carboxylic acids in batch and in 

flow. The reaction has been realized in mg-, g-, and even 

multigram quantities. The obtained azetidines are valuable 

building blocks for drug discovery. 
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