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Abstract

The extended tight binding (xTB) family of methods opened many new possibilities in the
field of computational chemistry. Within just five years, the GFN2-xTB parametrization for
all elements up to Z=86 enabled more than a thousand applications, which were previously not
feasible with other electronic structure methods. The xTB methods provide a robust and effi-
cient way to apply quantum mechanics based approaches for obtaining molecular geometries,
computing free energy corrections or describing non-covalent interactions and found applica-
bility for many more targets. A crucial contribution to the success of the xTB methods is the
availability within many simulation packages and frameworks, supported by the open source
development of its program library and packages. We present a comprehensive summary of
the applications and capabilities of xTB methods in different fields of chemistry. Moreover, we
consider the main software packages for xTB calculations, covering their current ecosystem,
novel features, and usage by the scientific community.

1 Introduction
For the computational modeling of complex
chemical reactions, Kohn–Sham density func-
tional theory (KS-DFT)1 is one of the most
widely used electronic structure methods.2–4

However, due to its high computational cost,
KS-DFT is practically out of reach for larger
systems and molecular dynamics on long
timescales. In some cases, atomic potentials
or force fields offer a low-cost alternative, but
the lack of explicit consideration of electronic
structure makes them unsuitable for studying
chemical reactions or different electronic states.

Simplified electronic structure methods like
tight binding (TB) theory5,6 offer a great re-
duction of computational cost compared to
KS-DFT, while keeping a minimal represen-
tation of the electrons which can be conve-
niently combined or augmented with atomic
potentials or force field related models. How-
ever, the reduction in computational complex-
ity compared to KS-DFT is offset by introduc-
ing (semi-)empirical model parameters. The
challenge of obtaining parameters for many dif-
ferent element combinations for a wide range
of applications in a chemically diverse space is
addressed in the extended tight binding (xTB)
Hamiltonian5 with the corresponding geometry,
frequency, and noncovalent interaction (GFN)
parameterizations.7,8 Since the xTB Hamilto-
nian is based on KS-DFT, it has the flexibil-
ity to be adapted and improved for describing
properties of interest like, e.g., spin-splittings,9
magnetic properties,10 and excited states.11

Furthermore, the xTB methods and their
parametrizations offer the possibility to tailor
the model specifically for a system of inter-
est, thereby enhancing method performance.
In this regard, reparametrization techniques,
whether through classical frameworks12 or au-
tomated differentiation13 facilitate the fine-
tuning of parameters based on existing param-
eterizations.14–16 It is worth noting that xTB
methods are also utilized in machine learn-
ing (ML), for instance, as dataset generation
tools that can be used to train more simplified
models. For this, either the xTB method can be
used to label data sets,17–19 or intermediate and
output quantities of xTB can be used as feature
inputs to models,20–22 targeting more accurate
labels obtained from KS-DFT, higher levels of
theory, or experiment.

In general, xTB methods are available for a
wide range of applications similar to those of
KS-DFT, but at a reduced computational cost
and a compromise on the accuracy. Geometry
optimizations present one of the primary ap-
plications, either for obtaining initial structure
guesses, for instance, preoptimizing solvent–
solute clusters,23 screening numerous geome-
tries to, for example, identify a global minimum
from thousands of isomer structures,24 or tack-
ling systems where KS-DFT is no longer feasi-
ble, such as in describing large oligomer struc-
tures.25

Furthermore, the accessibility of analytical
energy derivatives (forces) enables the calcula-
tion of Hessians to characterize the potential
energy surface (PES) and to compute thermo-
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statistical corrections to free energy. The latter
was employed, for instance, to calculate the free
energy of compounds relevant to photochemical
reactions.26,27 Additionally, the impact of sol-
vation, crucial for accurate free energy calcula-
tions, can be readily integrated implicitly across
all previously mentioned applications,28,29 en-
abling the computation of free energies in solu-
tion.

However, implicit solvation models might not
be able to capture all relevant solvent-solute in-
teractions, and break down, e.g., for participa-
tion of a solvent molecule in a reaction. Then,
cluster approaches explicitly accounting for the
solvent molecules are required. As these addi-
tional molecules strongly increase the compu-
tational effort, especially in the solute-solvent
cluster generation step, KS-DFT is often not
applicable, leaving efficient xTB methods a rea-
sonable choice for this task. While they allow
for the calculation of larger systems, the accu-
racy of KS-DFT is sometimes necessary for de-
scribing certain types of chemistry, where the
parametrizations are insufficient, the model in
general is not flexible enough, or the approx-
imations are too crude. In such cases, com-
bined approaches like embedding or QM:QM
(KS-DFT:TB) approaches can be used.30–33

Investigating the dynamics of the system of
interest directly is another application for xTB
methods where they offer a computationally
feasible alternative to KS-DFT-based ab ini-
tio molecular dynamics, with the possibility to
reach systems with millions of atoms.34 More-
over, the combination of xTB methods with
enhanced sampling techniques, such as meta-
dynamics with collective variables (e.g. the
root-mean-square displacement),35,36 enables a
quite general procedure for the exploration
of potential energy surfaces (PES) as realized
in the conformer-rotamer ensemble sampling
tool (CREST) program package.37,38 Finally,
the application to materials and extended sys-
tems, like crystal structure prediction or simu-
lation of liquids, is an emerging opportunity for
the application of xTB methods.39

In this work, we focus on the current state
of the main software packages for xTB meth-
ods: the xtb program suite and the tblite li-

brary. We begin with a brief theoretical excur-
sion behind the xTB framework, explaining the
basics of the Tight Binding theory and its GFN-
specific parametrization. Following that, we de-
scribe the technical side of the xTB-based pack-
ages, including their code ecosystem, licensing,
and their integration and interaction with the
broader scientific computational environment.
In the application section, we summarize the
most common uses of xTB methods, namely
conformer sampling, structure optimizations,
AIMD simulations, and data generation. To
complete the picture, we review several new fea-
tures available in the xtb package: aISS dock-
ing tool, QM/MM module, mcGFNFF force
field for molecular crystal calculations, and a
post-SCF implicit solvation model CPCM-X.
Finally, through citation dynamics, we demon-
strate the significant influence of the xTB meth-
ods, and GFN2-xTB in particular, in the field
of computational chemistry.

2 Theory and parametriza-
tion

In the following, a brief outline of the key fun-
damentals of the xTB framework is given. A
starting point for the xTB Hamiltonian is a
non-local KS-DFT expression:

E[ρ] = Enn +Ts[ρ] +Vext[ρ] +J [ρ] +Exc[ρ] (1)

where Enn is the nuclear–nuclear repulsion,
Ts[ρ] the KS kinetic energy, Vext[ρ] the external
potential of the nuclei, J [ρ] the Coulomb re-
pulsion, Exc[ρ] the exchange correlation energy,
and ρ is the ground state electron density. The
density ρ can be partitioned into two terms: the
superposition of the atomic densities ρ0 and the
density fluctuations δρ

ρ = ρ0 + δρ =
Nat∑
A

ρ0,A + δρ (2)

which is also shown in a schematic way in
Fig. 1 by depicting the density fluctuation for
a molecule as the difference between total and
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Figure 1: Schematic representation of partition-
ing of the total density ρ into atomic densi-
ties ρ0 and density fluctuations δρ. In this ex-
ample, the difference in chemical environments
is visible for the carbon atoms due to the qual-
itative difference in the sign of density fluctua-
tions.

atomic densities.
Due to the non-linear appearance of the den-

sity in the exchange-correlation functional, for
example, a series expansion of the energy in
terms of density fluctuations is used as a central
expression for all tight binding methods,

E[ρ] = E0[ρ0] + E1[ρ0, δρ] + E2[ρ0, (δρ)
2] + . . .

(3)
For the xTB methods, the energy functional

is expanded up to third order in the density
fluctuations. The main contributions to the
electronic energy are given by the effective one-
electron contribution, also known as extended
Hückel theory (EHT), computed from the den-
sity matrix P with

EEHT
1 =

∑
κλ

HκλPλκ (4)

where κ/λ are the indices of the atomic or-
bitals and the Hamiltonian H is given as

Hκλ =
hκ + hλ

2
·Sκλ ·K(Rκλ;Zκ, Zλ, ℓκ, ℓλ) (5)

where S is the overlap, hκ/λ are atomic energy
levels, and K is a non-linear function based on
the interatomic distance parameterized for each
element and angular momentum. The levels
are made dependent on the local environment
by a smooth counting function for coordinating
atoms around each atomic site. The expression
in Eq. 5 is central for the xTB methods, as it
contains about half of the model parameters.
Those are contained in the definition of the ba-

sis functions for computing the overlap matrix,
the energy levels and their coordination num-
ber dependence, and the parametrization of the
scaling function K.

For the second-order contribution to the en-
ergy, the density fluctuations are used to ex-
press the Coulomb energy J [ρ]. This is done by
expanding the density fluctuations further in a
series of atom-centered multipole moments ξ

(ℓ)
A

δρ =
Nnuc∑

A

L∑
ℓ=0

ξ
(ℓ)
A (6)

where the multipole moments are obtained
by Mulliken population analysis from the re-
spective moment integrals (overlap, dipole,
quadrupole). The second-order energy expres-
sion for the Coulomb energy can then be writ-
ten as

Ecoul
2 =

Nnuc∑
AB

L∑
ℓ,ℓ′=0

ξ
(ℓ)
A · T (ℓℓ′)(RAB;ZA, ZB) · ξ(ℓ

′)
B

(7)
where the elements T (ℓℓ′) are the interaction

tensors between the multipole moments, with
the correct long-range dependency and a pa-
rameterized short-range damping in the over-
lapping regime. For the GFN1-xTB method,
the expansion is truncated already for the
monopole moments, while in GFN2-xTB, con-
tributions up to the second order in the en-
ergy (dipole-dipole and charge-quadruple) are
included. Note that the short-range damping
of this electrostatic energy implicitly accounts
for correlation effects.

For electronically complicated small gap sys-
tems, an important contribution in terms of ro-
bustness is the electronic entropy −TelecS. It
arises from allowing fractional occupation based
on a Fermi distribution at finite electronic tem-
perature and enables the handling of systems
with static correlation in a reasonable, auto-
matic way.

Since there is no explicit contribution ac-
counting for spin-polarization, all xTB meth-
ods energetically favor low-spin solutions, even
if the physical ground state would have a higher
multiplicity. To overcome this limitation, spin-
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polarization can be explicitly introduced in the
Hamiltonian, allowing xTB to recover high-spin
ground states correctly.9

Additional energy contributions are the ef-
fective nuclear repulsion Erep

0 and London dis-
persion Edisp

n . The short-ranged nuclear re-
pulsion function parameterizes the combination
of nuclear–nuclear repulsion Enn, the nuclear–
electron attraction of the atomic densities
Vext[ρ0], and Coulomb repulsion of the atomic
densities J [ρ0]. The final GFN2-xTB energy is
given as,

EGFN2-xTB = Erep
0 + EEHT

1 + Ecoul
2

+ Ecoul
3 + Edisp − TelecS (8)

where Edisp
n is the self-consistent D4 disper-

sion energy40 and Ecoul
3 the third-order on-site

Coulomb energy. The GFN1-xTB energy ex-
pression has a similar structure but differs in
the details of some energy contributions, for ex-
ample, D3(BJ) dispersion41,42 is used instead of
self-consistent D4 dispersion. For brevity, we
will omit further details and refer the reader to
the full theory and derivation of the xTB meth-
ods in Ref. 5.

In general, the xTB methods are parameter-
ized on a chemically diverse set of molecular
data. The training sets consist of relative (reac-
tions) energies, molecular gradients, and molec-
ular Hessians. Electronic properties, such as
density matrices, partial charges, or dipole mo-
ments, were not included as reference. The en-
ergy expression of an xTB method is evaluated
with a given trial parameterization to obtain
energies, gradients, and Hessians in fully self-
consistent computations. The parameters are
optimized by minimizing the least squares (L2)
loss between the xTB computed values and
accurate reference data. In the optimization,
the Levenberg–Marquardt algorithm43,44 with
line search is used by computing the numeri-
cal derivatives of the loss function with respect
to the parameters. The parameters are initial-
ized by hand for the core elements HCNO, or
for other elements, from the row above or by
interpolation between other elements.

For, GFN2-xTB the HCNO training data

contains approximately 450 gradients, 40 Hes-
sians, and 1300 relative energies. The ref-
erence data are usually obtained either at
PBEh-3c45 or B97-3c46 level, while for rel-
ative energies mostly CCSD(T)/CBS values
from the literature were used, i.e., subsets
from the GMTKN5547 database (e.g., ACONF,
Amino20x4, BHROT27, BUT14DIOL, IDISP,
MCONF, PArel, PCONF21, PX14, S22,
SCONF, TAUT15, and WATER27). The el-
ement training sets for all other elements set
contain approximately 100 gradients and 10
Hessians. For the lanthanides (f-block ele-
ments), a single training set was used, and the
element parameters were linearly interpolated
between cerium and lutetium.

Although the GFN parametrizations are de-
signed to be general and robust, specialized
applications can benefit from tailored param-
eters. For example, GFN1-xTB was re-fitted
to DFT reference ionization potentials (IPs)
and electron affinities (EAs) for the calcula-
tion of mass spectra, as IPEA-xTB version.48

Additionally, GFN1-xTB was also optimized
for specific materials, such as organosilicon
compounds (GFN1(Si)-xTB) and halide per-
ovskites.15,16 Even tuning a single parameter
can improve the description of exotic inter-
actions.14 Classical packages like tblite 49 or
ParAMS12 provide support for reparametriza-
tion and manipulation of parameter files. How-
ever, some applications can benefit from tighter
integration and more transparent access to the
xTB parameters. This is explored with the re-
cently introduced dxtb package,13 which pro-
vides an implementation of the GFN1-xTB
Hamiltonian in PyTorch.50 In this approach,
the PyTorch framework allows to leverage au-
tomatic differentiation of the xTB energy ex-
pression, which could be applied for direct op-
timization of xTB parameters or in combination
with machine learning models using xTB out-
puts. The latter has already proven successful
in the context of other semiempirical quantum
chemical methods.51–54
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3 Technical details
Historically, the xTB methods are first made
available in the program xtb, which has grown
from an implementation of the xTB methods
with basic functionality like geometry optimiza-
tion, frequency analysis, and basic molecular
dynamics to a full computational chemistry
modeling package. As of today, xtb provides
a wide range of functionalities, such as the pos-
sibility to add constraining potentials for fixing
distances, angles, and dihedral angles or adding
a confinement potential to avoid dissociation of
clusters in molecular dynamics.

Next to the xtb package, the xTB methods
are developed as part of the tblite library, which
provides a rich library implementation. While
xtb provides an atomistic simulation package for
using xTB methods in many practical compu-
tational chemistry workflows, tblite is meant to
provide the basic building blocks for creating
an atomistic simulation package.

Both xtb and tblite are available under the
GNU Lesser General Public License version 3.0
(LGPL-3.0) or later revisions of the license.
This choice is made to ensure the package will
be available as open source and also be included
with proprietary projects. However, the LGPL-
3.0 ensures that changes made to the project
remain available to the community. Notably,
most reimplementations of the xTB methods
were done or started before the open source
release of the xtb package, including the ones
available in AMS,55 CP2K,56 entos,57 and Ter-
aChem.58

Besides the implementations in xtb and tblite
the xTB methods are available in many other
software packages. In the AMS package, the
GFN1-xTB method is provided as part of the
DFTB module with an MPI parallel implemen-
tation. The implementation of GFN1-xTB in
CP2K is provided both with MPI and GPU
support and has been scaled up for molec-
ular dynamics simulations up to 80 million
atoms.34,56 TeraChem has an implementation
of GFN1-xTB and GFN2-xTB (version with D3
dispersion) via a semiempirical integral library
(SQMBox),11 which enabled excited state cal-
culations based on the xTB Hamiltonians.

In the context of machine learning the QCore
package of Iambic (formerly Entos) implements
GFN1-xTB and the ML method OrbNet which
is based on the GFN1-xTB intermediates and
outputs.20,21 An open source framework for
tight binding development was created with the
TBMaLT package,59 which has basic support
for the xTB core Hamiltonian and is integrated
with the dxtb library.13

Furthermore, many software packages are
built with support for xtb or tblite. This in-
cludes tools for molecule generation like Archi-
tector,60 AGOX,61 cgbind,62 or stk,63 reaction
network exploration tools like ChemDyME,64

or Chemoton.65 Finally, xtb is shipped now as a
standard component of many established chem-
istry packages, like Orca,66,67 Turbomole,68

Gaussian69 and OpenMM70 or integrated via
tblite directly into the packages like QCxMS,71

DFTB+72,73 and NWChem.74

4 Applications
In this section, we collect the most popular
fields of application for xTB methods within
scientific research: conformational analysis,
equilibrium geometry searches, ab initio molec-
ular dynamics, and data generation.

4.1 Conformations and structures

One of the prime applications made possible
with the introduction of the xTB methods is
the large scale screening of molecule structures.
This computational efficiency for high through-
put calculations in combination with an effi-
cient approach, like metadynamics, to explore
the potential energy surface, has been real-
ized with CREST. The CREST program pro-
vides the de facto standard for sampling con-
former ensembles.38 This has enabled the ex-
ploration of a broader chemical space, facili-
tated by the extensive parameterization of the
xTB methods, leading to publications spanning
a wide range of applications. This comprises,
for example, drug design75 and delivery,76 cat-
alyst design and reaction pathway studies,77,78

molecular switches,79,80 and peptide dynam-
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ics.81 A more detailed overview of CREST and
its applications can be found in the recently
published software review.38

Aside from CREST, there are several al-
ternative conformer generation tools found in
the literature that have been used in combi-
nation with xtb. Popular choices are: AB-
Cluster based on the artificial bee colony al-
gorithm,82 Molclus program83 used in combi-
nation with the Multiwfn wave-function ana-
lyzer,84 conformational search module of Hy-
perChem,85 ETKDG method86 implemented in
RDKit library,87 Confab toolkit,88 the autodE
pipeline89 and XTBDFT.90 There are also some
projects which prefer to search for conform-
ers manually91,92 or semi-manually by means of
molecular simulation techniques.93–95

Even though conformer search is crucial and
an integral part of structural investigations, the
system size that can be treated is certainly lim-
ited. For systems with thousands of atoms,
performing such analysis is not computation-
ally feasible on modern CPU architectures. In
such cases, xtb still serves as a valuable energy
minimization tool, as GFN2-xTB was used for
geometry optimization in nearly one-fifth of the
publications discussed in Section 6. Typical
systems include but are not limited to, pro-
teins,96 polypeptides,97 metal-organic frame-
works,98 nanotubes,99,100 large non-covalently
bound complexes,101–103 and porous liquids.104

4.2 Dataset generation & data-
driven models

High quality datasets are an increasingly im-
portant resource in the chemical community as
the use of ML models is growing. To ensure
the quality and comparability of dataset entries,
all structures should be optimized by the same
electronic structure method. This step is cru-
cial if the source of an entry uses 1D represen-
tations such as SMILES,105,106 SELFIES,107 or
other, sometimes graph-based, specifications108

to store chemical information. Semiempiri-
cal electronic structure methods are a natu-
ral choice for this application since numerous
calculations need to be executed when curat-
ing a dataset. The robustness and efficiency of

xTB methods made them one of the methods
of choice for this purpose.

Using those elaborate datasets, models can
be built, that describe a correlation between
an input vector, also referred to as “labels”,
and a target property. During the training
phase, a statistical model is optimized to mini-
mize the loss function for predicting the target
based on the labels. The complexity of these
labels can vary drastically from basic proper-
ties like the molecular weight of a molecule to
electronic properties such as the Hamiltonian
matrix or orbital energies. The labels should
represent the necessary chemical information of
a molecule to predict the target property. The
computation of such labels should be efficient
since they are computed not only during the
training phase but also during the prediction
or inference phase. As discussed in the pre-
vious paragraph, xTB methods are commonly
used for structure optimizations when generat-
ing datasets. The use of labels based on xTB
properties is therefore associated with no addi-
tional computational cost.

In 2015, Ramakrishnan et al.109 introduced
the concept of ∆-ML models to chemical ap-
plications. These models are trained to in-
fer the difference in the value of a property
computed by two quantum chemical methods.
Usually, a lower-quality method is used as the
base method upon which the high-level method
value is predicted. Regarding the base method,
GFN2-xTB is a popular choice due to the fac-
tors summarized previously in this work. Data-
driven models are also compared against xTB
reference values.

Since there is a vast number of examples
where xTB methods are used in dataset gen-
eration tasks, we will only highlight those that
put special emphasis on the use of xTB. One
of the largest datasets for small- to medium-
sized organic molecules is GEOM.17 It consti-
tutes a high quality data set collected from var-
ious sources with diverse experimental proper-
ties as labels. Using CREST and associated
workflows, conformer sets for 317,928 molecules
were computed at the GFN2-xTB level of the-
ory. For a smaller portion of molecules, the
level of theory was extended to DFT quality.
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Figure 2: Comparison of the number of systems
for the datasets, where xTB methods played a
significant role in the generation of structures
or labels. The area of the spheres is scaled ac-
cording to the number of structures. QM9 is
used as a size reference.

GEOM thus constitutes a dataset to train mod-
els to predict conformer ensembles,110 or to use
conformer ensembles as input as compared to
single structures.111

Another still growing dataset with a similar
scope of molecules and an even greater collec-
tion of xTB-based labels is QMugs.18,19 Here,
the conformational space of entries is also ex-
plored and included. The recent 1.1 update in-
cludes further steric and “dispersion” descrip-
tors based on xTB.

Besides organic molecules, xTB methods are
also used in the structure optimization of the
tmQM112 dataset containing 86,665 mononu-
clear transition metal complexes. For this set,
no xTB based labels are published. However,
it shows the robustness of these methods be-
yond organic chemistry. This point is further
underlined by smaller databases capturing spe-
cific parts of the chemical space: organocata-
lysts in OSCAR,113 or aggregate materials in
ASBase.114 In Fig. 2, the size of the datasets
featured in this work is compared against the
size of QM9115 as a well-cited reference.

The labels computed from xTB calculations
can be sorted into a few categories. First, a dis-
tinction between scalar and tensorial descrip-
tors can be made. For the latter type, we can
mainly find work by the Miller group. They
published a series of neural network models
based on quantum chemical tensors and named
them OrbNet.20,21,116 Apart from this family of
models, Wang et al. published a generative
model predicting the 3D structure of drug-like
molecules based on experimental and quantum-

chemically computed electron densities.117 In
terms of scalar properties, the HOMO-LUMO
gap is a popular choice for applications involv-
ing electronic excitations.118,119 In other appli-
cations, the models are trained to maximize
this gap.120,121 Besides the HOMO-LUMO gap,
HOMO, LUMO and SOMO orbital energies are
used as well.121–123 In contrast to the molecular
properties presented to this point, atomic prop-
erties are also used by models, most commonly
atomic partial charges.122–126 Usually, only the
partial charge of atoms selected by chemical in-
tuition is used, i.e., reaction or coordination
centers.

Recognizing the potential of ∆-ML models,
the MultiXC-QM9127 dataset was curated by
Nandi et al. It encompasses the reaction ener-
gies for 162 million reactions with 228 quantum
chemical methods, including GFN2-xTB ener-
gies. This allows to build elaborate ∆-ML mod-
els for small organic molecules. ∆-learning ap-
proaches have also been published in combina-
tion with ML-potentials. Staub et al. combined
the SpookyNet128 framework with GFN2-xTB
as a base level.129 This approach proved to be
superior in the prediction of chemical yields for
Wilkinson’s catalyst, compared to only relying
on GFN2-xTB calculations. A similar approach
for building potential for molecular dynamics
simulations is published by Murakami et al.130

In their work, a polynomial fit is used instead
of neural network models.

xTB methods are used in other areas of
chemistry to build ∆-models: atmospheric
chemistry,131 medicinal chemistry,132 and pho-
tochemistry.133 Closely related to ∆-models,
there are also studies where the xTB energies
are used in neural network models to enrich
the data, leading to better prediction perfor-
mance.134,135

4.3 Ab initio molecular dynamics

Ab initio molecular dynamics (AIMD) provides
a powerful computational technique to capture
effects where approaches based on stationary
points are not sufficient anymore. Different lev-
els of electronic structure theory can be applied.
In practice, KS-DFT, particularly at the GGA
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level, is most commonly used.136–138 However,
the computational cost of running KS-DFT is
prohibitive regarding the size of the system
of interest, which limits the practical usabil-
ity of AIMD. The xTB methods have shown,
due to their more favorable computational cost,
the potential to scale up to large system sizes,
with the largest reported AIMD using GFN1-
xTB and specialized hardware implementations
reaching 80 million atoms.34

An example of the usage of AIMD with xTB
methods is the investigation of transition state
dynamics for transmetalations.139 Here, GFN2-
xTB is used to describe the reaction mechanism
in different explicit solvent environments, which
crucially participate in the transition state and
the post-transition state dynamics. Further-
more, von der Esch et al.140 compared com-
puted IR spectra extracted from AIMD with
experimental values. The benchmark results in-
dicate that the tested KS-DFT functionals per-
form the best, while GFN2-xTB is an attrac-
tive, time-efficient alternative to these KS-DFT
methods.

As mentioned above, xTB-driven AIMD in
combination with enhanced sampling tech-
niques or metadynamics can be applied for re-
action discovery. AIMD simulations with the
xTB methods are mainly used in two ways ei-
ther for direct quantitative analysis of AIMD
trajectories,141–144 or for qualitative and ex-
ploratory AIMD runs before applying more ac-
curate and expensive KS-DFT methods.145 In
the approach termed nanoreactor,36,146 poten-
tial reaction products from a given set of start-
ing structures are sampled from an enhanced
sampling AIMD. Here, the reactants are con-
fined to a limited space and exposed to a re-
current piston-like force that induces reactions
among neighboring molecules.146 Alternatively,
a root-mean-square displacement-based meta-
dynamics run, similar to conformer sampling,
was shown to perform well in unimolecular re-
arrangement or fragmentation reactions.36 The
conformational sampling via metadynamics has
already been outlined in section 4.1, which is
available in the CREST program.37,38

Furthermore, specialized applications for
AIMD with xTB are available via the QCxMS

program48,71 for describing molecule fragmen-
tation in high-energy environments like elec-
tron ionization mass spectrometry or collision-
induced dissociation.147,148 In QCxMS several
parallel high-energy AIMD simulations with
xTB can automatically explore the energeti-
cally accessible phase space regions, yielding
fragmentation products without bias.

Among the qualitative applications of AIMD
is its use in a more educative setting: The ef-
ficiency of the xTB methods has enabled its
use in interactive MD simulations, in which
forces can be exerted by the user during the MD
run.149 With this, users can “manually” break
bonds during xTB-driven MD runs and observe
the reaction of the system afterward.

4.4 Implicit Solvation

In a multitude of the aforementioned applica-
tions, e.g. the creation of the GEOM17 dataset,
the inclusion of solvation effects plays a crucial
role to be able to reproduce experimental condi-
tions. In the xTB methods, this is achieved via
the inclusion of tailored implicit solvation mod-
els, namely a generalized Born/Surface Area
(GBSA) model, and the analytical linearized
Poisson Boltzmann (ALPB)28 model. Both of
these models were specifically parametrized for
the respective methods and can be invoked by
simple command line keywords.

Due to its ease of use, the ALPB model has
been used in numerous computational studies
since its publication in 2021.28 However, the
GFN methods and, therefore also, the ALPB
model were not primarily designed to accu-
rately describe free energies. Still, there have
been a limited number of studies that directly
assess their performance for high-throughput
virtual screening applications, like dissocia-
tion constants or enzyme-ligand binding.150–152

While these studies generally provided promis-
ing results, they also revealed the shortcomings
of the xTB methods, which could be addressed
by re-evaluating the energies at higher levels of
theory. Therefore, the usage of a multi-level
workflow, where energies are calculated with
high-level methods on lower-level geometries,
is the common way for calculating solvation-
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dependent properties153 with the help of the
xTB methods.

Additionally, the high computational effi-
ciency of the xTB methods, in combination
with the ALPB model, gave rise to the creation
of physics-informed machine learning models
utilizing features or training data obtained with
the xtb program.22,154 One example of an ap-
proach that uses readily available features for
the calculation of solvation free energies is the
creation of the implicitly perturbed Hamilto-
nian.22 This approach defines energy attributes
of the molecular Hamiltonian that are implic-
itly perturbed by solvents, creating a new class
of molecular representations for deep learning
approaches.

5 Novel features
This section highlights the recently introduced
xtb features available in version 6.7.0 or higher.
These features include the aISS docking algo-
rithm, CPCM-X solvation model, mcGFNFF
periodic force field, and ONIOM multi-layered
framework.

5.1 aISS docking algorithm

As molecular phenomena and chemical reac-
tions typically involve more than one parti-
cle, non-covalent interactions (NCIs) of differ-
ent molecules are often crucial when modeling
such processes. With the increasing molecular
complexity of the interacting systems, possible
interaction motifs also become more diverse and
harder to predict. Hence, an automated com-
putational prediction of intermolecular geome-
tries is desirable, ranging from two molecules
up to large clusters consisting of many parti-
cles. For this, the efficiency and reliability of
the xTB methods when simulating NCIs are
a perfect match and allow an automated com-
putational prediction of intermolecular geome-
tries. This was realized with one of the novel
features included in the xtb program package,
namely the automated interaction site screen-
ing (aISS) algorithm, which generates dimers
up to large clusters of interacting molecules

fully automated.155 It combines the intermolec-
ular force field xTB-IFF156 for a fast and accu-
rate screening of possible interaction sites with
the GFN methods for reliable geometry opti-
mizations. The aISS yields structures of sim-
ilar quality as CREST by being 1–3 orders of
magnitude faster. Combined with the broad
parametrization of the underlying xTB meth-
ods, this allows to also treat systems with 1,000s
of atoms almost regardless of the atomic com-
position. An example of this is shown in Fig. 3.

Figure 3: With the aISS predicted structure of
the rhodium-organic cuboctahedra inside the
Pd48L96(BF4)96 Goldberg polyhedron. Hydro-
gen atoms are omitted for clarity. Pd is de-
picted in light blue, Se in orange, B in pink-
ish, and Rh in light sea green. Reproduced
and adapted from Ref. 155. Available under
a CC-BY 4.0 license. Copyright 2023 C.Plett,
S.Grimme.

The xTB-based docking was already applied
to a variety of problems and molecular systems
like the investigation of NCIs of supramolec-
ular complexes,157 ionic liquids,158,159 metal-
organic cages,160 and nanobelts.161 In addition,
xTB-based docking is employed in the con-
text of explicit and microsolvation, e.g., with
the QCG algorithm.162 This hybrid cluster-
continuum approach generates clusters of so-
lutes solvated by solvent molecules that are em-
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bedded in implicit solvation models like GBSA
or ALPB. It was, for example, successfully em-
ployed to model solvation in the context of
reaction mechanisms,163 conformational analy-
sis,164,165 and spectroscopic properties.166

5.2 Extended Conductor-like Po-
larizable Continuum Model

Even though xTB was already combined with
tailored ALPB and GBSA implicit solvation
models, which produced good results given
their high efficiency, these models are not as
accurate as the more advanced implicit solva-
tion models used routinely in combination with
DFT methods. However, these advanced solva-
tion models, typically based on polarizable con-
tinuum models (PCMs), are not readily avail-
able for usage with the xTB methods.

The recent integration of the domain decom-
position conductor-like screening model (dd-
COSMO)167 into the xtb program package
marked a significant leap in the solvation de-
scription of the xTB methods. This enhance-
ment, especially when combined with estab-
lished literature approaches for post-processing
results, has greatly improved the performance
of xTB methods for describing solvation-related
properties. This combined approach is called
the extended conductor-like polarizable contin-
uum model (CPCM-X).29 It leverages a combi-
nation of methods first introduced by Klamt in
the conductor-like screening model for real sol-
vents (COSMO-RS)168 and Marenich et al. in
the universal solvation model based on solute
electron density (SMD)169 and wraps it into a
convenient open-source framework, that can be
easily interfaced from various software packages
and methods. The native implementation of
the method in the xtb software package using
the GFN2-xTB method improves the solvation
description for large supermolecular complexes
by up to 40 % in comparison to ALPB while
still being more than two orders of magnitude
more efficient than DFT-based methods. It has
been successfully used to develop efficient work-
flows for calculating solvation-based properties,
such as acid dissociation constants.170

5.3 Crystal structures

While the xTB methods were parametrized
mainly for molecular systems, the application
to extended systems under periodic boundary
conditions like molecular crystals is an area
where fast semiempirical methods can be ap-
plied. A full periodic implementation of the
xTB methods including k-mesh integration has
been realized only in the DFTB+ package and
the Atomic Simulation Environment (ASE171)
via the tblite library.72 The only other known
implementation of GFN1-xTB with k-mesh in-
tegration is available in the AMS package.55

Starting with xtb version 6.7.0, the generic force
field GFN-FF supports periodic boundary con-
ditions, enabling molecular dynamics simula-
tions, pre-optimization, and screening of large
unit cells.172 This implementation features a
specialized run mode optimized for molecu-
lar crystals (mcGFN-FF) which reduces non-
covalent interactions. Despite being less robust,
mcGFN-FF achieves accuracy comparable to
the GFN1-xTB regarding lattice energies and
unit cell volume in many cases. Exploring the
initial stages of crystal structure prediction is a
promising application that could greatly bene-
fit from this force field. For non-molecular crys-
tals, Gale et al.173 have developed the periodic
GFN-FF (pGFN-FF) which utilizes the Wolf
summation and damping of the bonded three-
body term to stabilize electrostatic interactions,
particularly for ionic crystals. The method has
been implemented in the General Utility Lat-
tice Program (GULP) program.

The xTB methods, GFN1-xTB and GFN2-
xTB, enable efficient screening of the poten-
tial energy surface (PES), facilitating the analy-
sis of crystal polymorphs, adsorption behaviors,
and solid-solid transition states.39,174–176 Molec-
ular dynamics simulations are an invaluable
tool for elucidating crystal structures. In par-
ticular, GFN2-xTB was used to investigate lig-
and interactions in MOFs, adsorption behavior,
and transitioning between polymorphs.177–179

Though GFN has positioned itself as an effi-
cient and robust TB parametrization for mate-
rials research, it has its limitations. The direct
application of the xTB methods could be chal-
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lenging for certain types of solids, such as met-
als,180 radicals or charged molecules with dou-
ble or triple bonds.181,182 Additionally, a bench-
mark study on crystalline organic semicon-
ductors has highlighted difficulties in applying
GFN2-xTB for periodic systems due to unphys-
ical geometries.183 However, the same study
also demonstrates reasonable performance of
GFN1-xTB on similar systems.

For cases where tight-binding methods are ex-
pected to perform poorly, multi-level workflows
that incorporate subsequent DFT calculations
present a promising alternative. Another alter-
native is the integration of xTB methods with
ML potentials,184–186 which can then be utilized
in the form of ∆ML corrections to enhance ac-
curacy while retaining computational efficiency.

5.4 Multiscale modelling

The efficiency and robustness of the xTB meth-
ods are particularly appealing facets in the in-
tegrated approaches, where the chemical prob-
lem is addressed through the Divide and Con-
quer strategy. The core idea is to divide the
molecular system into several regions or lay-
ers, each calculated at a certain level of theory
and merged into a multiscale model. Such mod-
els usually target cases where conventional ab-
initio theories are not feasible. The one promi-
nent example of the integrated model is the
ONIOM (Our Own N-layered molecular Orbital
and molecular Mechanics) method.187

The simple variant of the ONIOM method is
a two-layered scheme: the system is partitioned
into inner and outer regions. The inner region,
usually of higher interest, is treated with a more
accurate theory. The environment, or outer re-
gion, is accounted for by calculating the inner
region and the entire molecule at a lower level
of theory and then subtracting the former from
the latter. It is crucial that, while the inner
region can be treated with ab initio methods
(assuming a reasonable cutoff size), the lower-
level theory must also sufficiently describe the
entire system to ensure sufficient accuracy. In
this context, the use of xTB methods becomes
particularly advantageous due to their broad
parametrization.

Outer layerInner Layer

Figure 4: The 2-layered QM/MM scheme
is demonstrated using an example of a Zr-
functionalized UiO-66 metal-organic frame-
work. Reproduced and adapted from Ref. 31.
Available under a CC-BY 3.0 license. Copy-
right 2023 C.Plett, A.Katbashev, S. Ehlert,
S.Grimme, M.Bursch.

The integration of the xTB family into the
ONIOM framework is demonstrated using the
example of UiO-66.91 In recent work,31 this
Zr-based metal-organic framework (MOF) was
modeled as an octahedral cage, consisting of six
metal nodes and a total of 484 atoms, as shown
in Fig 4. The cage was optimized by varying the
size of the inner region, considering one, three,
and six nodes, and using pure as well as inter-
mixed methods (DFT, DFT//GFN, GFN).

Although pure DFT methods yielded the
smallest deviations from the crystal structure,
their steep computational scaling limits rou-
tine application for large-scale system size. On
the other hand, the ONIOM(DFT//xTB) com-
bined approach can be orders of magnitude
faster, depending on the size of the inner region,
and offers better accuracy than the underlying
xTB low-level theories alone. As a result, the
ONIOM framework can be expected to achieve
a more balanced cost-efficiency ratio compared
to standalone methods.

In the literature, the xTB methods have
already been applied in multilayered frame-
works.30,32,33 These frameworks can vary de-
pending on the approach – whether using the
subtractive ONIOM or additive QM/MM,188

the role of GFNn-xTB as a high-level or low-

12
https://doi.org/10.26434/chemrxiv-2024-pvfs0-v2 ORCID: https://orcid.org/0000-0001-7809-771X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-pvfs0-v2
https://orcid.org/0000-0001-7809-771X
https://creativecommons.org/licenses/by/4.0/


level method, and the treatment of solva-
tion as a continuum or explicitly. The avail-
able research spans a diverse chemical space,
from water clusters,189,190 DNA–strands191,192-
lanthanoid complexes,193 organoflourine com-
pounds,194 to (metallo)proteins.195–203 In ad-
dition, there is some interesting work done on
benchmarking the size of the inner region,204

probing QM/MM interface handling,205 and
reparameterizing Lennard-Jones potentials
based on the QM/MM results.206,207

The ONIOM routine is implemented in the
xtb package starting from version 6.6.0. In ad-
dition to the methods available in xtb itself,
it interfaces the ORCA66,67 and Turbomole 208

program packages. As alternatives, one can use
also QM/MM modules in the ORCA,66 Gaus-
sian,209 and PySCF ,210 where xTB methods
are accessible through external calls to the xtb
or tblite API. A multi-center ONIOM imple-
mentation that also utilizes the xTB methods
is now available in CREST as well.211

6 Citation overview
Over the years, xtb has developed into a multi-
functional ecosystem incorporating GFN0-
xTB,212,213 GFN1-xTB,7 GFN2-xTB,8 and
GFN-FF214 methods. The publications citing
these methods were combined into the collec-
tive database with the aim to analyze the usage
of xtb software package in the community.215

In addition to the aforementioned four “main”
publications, the database contains the review
on the extended tight binding5 and does not
contain duplicates. The database was processed
to assess the popularity of xtb over the years,
which is shown on Fig. 5a.

In 2017, the first member of the GFN-xTB
family, GFN1-xTB (originally abbreviated as
GFN-xTB), was published. Two years later,
the second-generation GFN2-xTB was released,
gathering significant attention in the commu-
nity and contributing to the overall popularity
of xtb.

Since 2017, the number of papers citing xtb
has grown quadratically, with almost 1300 cita-
tions in the previous year alone, averaging three

(a) Number of papers citing xtb over time.

(b) Number of papers citing xtb-related publica-
tions over time.

Figure 5: The annual citation count for xtb-
related methods, both collectively (a) and sep-
arately (b). Plot (a) includes only the mutually
related GFN-type xTB methods but excludes
the earlier presented sTDA-xTB method216 for
excited state calculations.

to four citations per day. The total number
of citations has already passed the 3800 mark
and is expected to continue growing as xtb (and
tblite) expand their toolbox with a new semi-
empirical method in the near future.

A more in-depth analysis is illustrated in
Fig. 5b, where the citation dynamics for each
method are considered independently. The
overall trend is upward, indicating that all
listed publications are gaining more and more
recognition every year. The steepest curve be-
longs to GFN2-xTB, exhibiting a polynomial
increase, with more than 2000 citations over
a span of seven years and around 700 cita-
tions last year alone. Similarly, GFN1-xTB
shows steady growth in the number of citations
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Figure 6: Heatmap illustrating the overlap be-
tween the citation bases of GFN1-xTB, GFN2-
xTB, GFN-FF, CREST, and ALPB/GBSA.
The diagonal shows the number of unique cita-
tions, while off-diagonals represent the number
of cross-referenced citations.

(around 1300), though the growth is more linear
compared to GFN2-xTB. The general-purpose
force field GFN-FF gains considerable recogni-
tion, continuously extending its user base.

In addition to the discussed statistics, it is
interesting to demonstrate the interconnection
between the xtb components. To complete the
graph, citation bases of the CREST37 as well as
the implicit solvation models (ALPB/GBSA)28

were added to the xtb publication database, as
shown in Fig. 6.

From this analysis, it is evident that GFN2-
xTB and GFN1-xTB are the most co-cited ap-
proaches. One possible explanation for this
could be that a significant portion of these co-
citations come from papers related to method
development and benchmarking. The same rea-
soning can be applied to the regular co-citation
of GFN-FF with xTB methods, with GFN2-
xTB being cited in approximately half of all
GFN-FF cited works.

The intersection of the GFN family mem-
bers with CREST is essential to estimate their
applications in the conformer search. In this
regard, CREST is most frequently used with
the GFN2-xTB method, with its usage twice
that of the GFN1-xTB:CREST combination. A
similar relationship is observed between GFN1-
xTB:CREST and GFN-FF:CREST combina-
tions.

The ALPB/GBSA implicit solvation models
were used the least in publications, which can

Figure 7: The aim-specific categorization of the
publications citing GFN2-xTB. Appl: Applica-
tion, Dev: Development.

partly be attributed to the fact that this pub-
lication is the newest among the topics investi-
gated. Alternatively, it could also indicate that
most calculations were either done in the gas
phase or used different solvation models.

Finally, GFN2-xTB was chosen to demon-
strate the end-purpose-specific partitioning of
its citation base. Unfortunately, due to lim-
ited access, not all publications are included in
the assessment. This assessment is depicted in
Fig. 7 in the form of a pie chart. Despite the po-
tential for slight inaccuracies due to the size of
the final database (over 1300 papers) and lim-
ited human resources, the overall trends remain
accurate and can be used to draw meaningful
conclusions. During the partitioning, the small-
est division to be considered was set to be more
than 20 papers.

During the partitioning, the smallest division
considered included more than 20 papers. For
this reason, some applications are not listed as
separate sections and have been added to the
most suitable category. In addition, all cross-
references, such as GFN2-xTB being used for
both conformer search and structure optimiza-
tion, are addressed by considering only the most
relevant usage to avoid multidimensional over-
laps and exhaustive statistics.

The dominant portion (70.5%) of users uti-
lized GFN2-xTB for general-purpose applica-
tions. Within this category, conformer search,

14
https://doi.org/10.26434/chemrxiv-2024-pvfs0-v2 ORCID: https://orcid.org/0000-0001-7809-771X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-pvfs0-v2
https://orcid.org/0000-0001-7809-771X
https://creativecommons.org/licenses/by/4.0/


which also includes manual sampling, repre-
sents the largest fraction, followed by structure
optimization. The third-largest fraction, ab-
initio molecular dynamics (AIMD), is merged
with periodic calculations on crystals due to its
small size (less than 0.9%).

The remaining segments use xtb for vari-
ous property calculations (e.g., HOMO-LUMO
gap,217 interaction energies,218 UV and ECD
spectra,219 charges220), as well as barriers,
molecular docking (with and without aISS),
and QM/MM applications.

More than 15% of publications cite GFN2-
xTB in the context of method development.
This includes the development of new meth-
ods (including workflows), and its use for ma-
chine learning purposes (primarily dataset gen-
eration).

The last piece is more general, and includes
reviews, software papers, and benchmarking of
the method.

The corresponding databases used in this
analysis can be found in a public GitHub
repository: https://github.com/grimme-
lab/GFN2_citation_base.git

7 Conclusion
We presented the current state of the ecosys-
tem and community around the software pack-
ages xtb and tblite as well as the xTB meth-
ods. Within five years, the GFN2-xTB method
already enabled thousands of publications,
demonstrating its potential to be a new de facto
standard method for computational chemistry.
A crucial contribution to this success is the wide
availability of the xTB methods through open
source program simulation packages, mainly
provided by interfacing with the xtb package,
integrating the tblite library, or directly using
the xtb package. The xTB methods make it pos-
sible to cover a wide range of tasks in computa-
tional chemistry, like geometry optimizations,
frequency analysis, free energy computations,
solvent modeling, and molecular dynamics to
highlight a few. More specialized applications,
like reparametrization or multiscale modeling,
are supported and readily available. Special

attention should be given to the crucial role
of xTB methods in large scale data generation
campaigns where xTB methods are present as
the initial screening step, intermediate refine-
ment, or even for providing data labels, which
makes it crucial in the development of data sets
purposed to train large scale ML models.

Going forward, the development will con-
tinue to focus on better integration of hardware
acceleration, like GPU support (available for
Mulliken-approximated Fock exchange in SQM-
Box),11 and parametrization tools, like auto-
matic differentiation via dxtb. On the method-
ological side, the development of improved sam-
pling approaches together with xTB methods
for improved conformer sampling, reaction dis-
covery, or chemical space exploration are tar-
gets. An outstanding challenge is to bring the
xTB methods into the realm of material dis-
covery and crystal structure prediction, by im-
proving support and ease of handling periodic
systems and investigating the need for special-
ized parametrizations. Integration of future
xTB methods like the currently developed gen-
eral purpose parametrization (g-xTB) is a high
priority within the framework of the tblite li-
brary. Overall, the xTB methods will con-
tinue providing the basic building blocks for
high-throughput and screening applications for
molecular properties and be indispensable for a
wide range of computational simulations.
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