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Abstract12

Peptide aggregation is a long-standing challenge in chemical peptide synthesis, limiting its13

efficiency and reliability. Although data-driven methods have enhanced our understand-14

ing of many sequence-based phenomena, no comprehensive approach addresses so-called15

“non-random difficult couplings” (generally linked to aggregation) during solid-phase pep-16

tide synthesis. Here, we leverage existing peptide synthesis datasets, supplemented with17

newly acquired experimental data, to build a predictive model that deciphers the role of18

individual amino acids in triggering aggregation. First, we identified and experimentally19

validated composition-dependent aggregation as a stronger predictor than sequence-based20

patterns. This insight enabled the development of a composition vector representation,21

allowing insights into the aggregation propensities of individual amino acids. Applying22

an ensemble of trained models, we predict the aggregation properties of peptides and23

recommend optimized synthesis conditions. By elucidating each individual amino acid’s24

influence, this method holds the potential to accelerate synthesis optimization through25

existing data, offering a robust framework for understanding and controlling peptide ag-26

gregation.27

†
Equal Contribution, Author order interchangeable
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1 Introduction28

Peptides and proteins play diverse biological roles, functioning as hormones, enzymes, and29

signalling molecules, which are critical for maintaining physiological processes. Their ver-30

satility and specificity have made them valuable therapeutic agents, driving innovations in31

the pharmaceutical industry. [1] Understanding their structures has been a long-standing32

challenge in biochemistry. [2, 3] Despite key advances, human intuition alone has proven33

insufficient for a systematic understanding of the structure of proteins based on their pri-34

mary sequence, leading to the widely known “Protein Folding Problem”. [4] With decades35

of accumulated data, computational methods have emerged as essential tools to predict36

the structure of proteins. [5–7] This evolution in methodology culminated in the devel-37

opment of AlphaFold and RoseTTAFold, effectively solving the problem of accurately38

predicting a protein’s structure from its sequence. [8, 9]39

While these developments have greatly enhanced our understanding of peptide and pro-40

tein folding under physiological conditions, folding properties during solid-phase peptide41

synthesis (SPPS) remain comparatively unexplored. During SPPS, aggregation of resin-42

and linker-bound peptides often induces peptide folding, which can hinder synthetic ef-43

ficiency and render certain sequences inaccessible. Aggregation is thought to originate44

from the undesired formation of β-sheet structures on the solid support. [10–13] This45

causes both truncations and deletions of the peptide sequence, often making it challeng-46

ing, if not impossible, to isolate the desired peptide. Notably, even additional coupling47

or deprotection cycles and a large excess of amino acid do not lead to full conversion48

post-aggregation. Aggregation depends on several factors, such as synthesis temperature,49

loading of the solid support, and–most importantly–the peptide sequence and its amino50

acid side chain protecting groups. It has been shown that aggregation often occurs within51

5–15 amino acids from the anchoring point to the resin. [14,15] Consequently, C-terminal52

amino acids exert the greatest influence on aggregation, with current literature suggest-53

ing that β-branched amino acids aggravate this effect. [14] Despite multiple attempts to54

understand the sequence-dependence of aggregation experimentally [16–18] and with ad-55

vanced data analytics on UV data obtained from flow-SPPS [19,20], a robust method to56

predict aggregation and to propose an alternative synthesis strategy remains elusive.57

In this study, we use machine learning on deprotection peak data collected from the in-58

line UV-Vis of an automated fast-flow peptide synthesiser (AFPS) [21]. This data directly59

correlates to the aggregation state of the peptide being synthesised on the resin (see Fig-60

ure 1 B). We leverage the UV-Vis data to gain new insights into the factors contributing61

to peptide aggregation, including the influence of each individual amino acid. Through62

shuffling of peptide sequences, it was found that the composition of the peptide, rather63

than the specific sequence, largely determines the aggregation characteristics of a given64

peptide. We verify this claim through experimental results and ultimately demonstrate65
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Figure 1: Analytical data collected with an in-line UV module enables data-driven methods
for synthesis analysis. A) AFPS enables the precise monitoring of reaction kinetics, which corre-
sponds to the aggregation of the sequences. B) Aggregation in the in-line UV traces is characterized
as the broadening of the deprotection peak. Aggregation is quantified by an aggregation factor,
calculated using the following formula: AF = Wn – Hn. Wn: half of the maximum height, normal-
ized to the first peak, Wn: peak height normalized to the first peak. If AF > 20, the sequence is
considered aggregating. C) Aggregation is driven by β-sheet formation between the growing peptide
chains. D) In-line UV data collected during synthesis was leveraged to predict the occurrence of
aggregation and the contribution of individual amino acids.

how these findings can be used to avoid aggregation.66

2 Results and Discussion67

Prediction of aggregation during SPPS is model- and68

representation-independent.69

Predicting peptide aggregation requires criteria to distinguish between aggregating and70

non-aggregating sequences. All data used in this study were collected on an AFPS71

platform equipped with an in-line UV-Vis detector monitoring coupling and deprotec-72

tion peaks during synthesis (Figure 1A). Deprotection peaks, which result from 9-73

fluorenylmethyloxycarbonyl (Fmoc) removal, provide two crucial pieces of information:74
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Figure 2: Prediction accuracy is independent of model or representation. A) A variety of
different models ranging from language models to classical machine learning models were trained to
predict whether a given peptide sequence aggregates or not. B) Consistent prediction accuracy scores
are observed across all models and representations regardless of the model, chemical representation,
or if the sequence is fed stepwise or as a whole sequence.
1: ESM 2.0, BERT. 2: HIVE-COTE 2, WEASEL, TimeForest. 3: XGBoost, Random Forest, KNN,
Gaussian Processes.

their area indicates the coupling/deprotection efficiency, while their shape reflects the ag-75

gregation state. [16,20,22,23] Following Mohapatra et al. [19], we defined aggregation as76

the deprotection peak broadening by more than 20% relative to the baseline. If any peak77

during synthesis exceeds this threshold, we classify the entire sequence as aggregating. In78

practice, this directly correlates to a decreased crude purity (Figure 1B).79

Next, we used machine learning to predict the aggregation characteristics of a given pep-80

tide using two datasets: One published by Mohapatra et al. [19] and one internal dataset.81

Both were generated using similar AFPS platforms [21] and synthesis conditions, ensur-82

ing minimal statistical deviation between the two. After curating and merging the two83

datasets (see Methods 1), the combined dataset comprised 539 peptide sequences. Of84

the total sequences, 420 were sourced from the Mohapatra dataset, with 48.8% showing85
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aggregation, and an additional 119 sequences from our internal dataset, where 53.8% ag-86

gregated. This resulted in a nearly balanced combined dataset, with 49.9% of sequences87

exhibiting aggregation. As aggregation typically occurs 5–15 amino acids from the an-88

choring point to the resin, all peptides longer than 20 amino acids were truncated and89

those shorter than five amino acids were discarded (see Supporting Information Figure 190

for length distribution).91

While extensive research has been conducted on identifying suitable statistical models92

and molecular representations for proteins, considerably less attention has been devoted93

to peptides. To address this gap, we explored a wide range of models and representations94

for peptide synthesis data. In all cases, we framed the problem as a binary classification95

task: Does a given peptide sequence aggregate or not? Our data was collected during96

synthesis, allowing for two distinct prediction approaches: either predicting the aggrega-97

tion characteristics of the final synthesized peptide directly or leveraging the step-by-step98

nature of the synthesis process. During synthesis, the peptide is elongated amino acid99

by amino acid, with information on whether the peptide has aggregated available at each100

synthesis step. We explored both approaches for the predictions (Figure 2): “Whole Se-101

quence” corresponds to predictions based on the final peptide sequence and “Stepwise”102

emphasises the step-by-step nature of the syntheses. For the step-by-step approach, all103

peptides are labelled as non-aggregating for the first few couplings. Once an aggregation104

event, i.e. broadening of the deprotection peak, occurs, all subsequent peptide couplings105

are labelled as aggregating.106

To evaluate both approaches, we experimented with a range of models and represen-107

tations. One highly successful approach for proteins treats the amino acid sequence as108

text and leverages language models to predict protein properties. [24,25] Inspired by this109

approach, we fine-tuned a specialized protein language model (ESM2.0 [26]) as well as a110

generalist language model (BERT [27]) to classify whether a peptide aggregates or not.111

In addition to fine-tuning pretrained models, we also trained a BERT model from scratch112

(Figure 2, Language Models).113

Another common data type in machine learning are time series. A time series consists114

of a sequence of data points collected at regular time intervals. Following this definition,115

the stepwise synthesis of a peptide can be considered a time series with each addition of116

an amino acid corresponding to one time step. We trained three state-of-the-art time se-117

ries classification models on this problem, representing each amino acid with a numerical118

token and padding to accommodate varying sequence lengths (see Figure 2, Timeseries).119

In addition to these models, we also explored the performance of classical machine120

learning models (e.g. Random Forest [28], XGBoost [29]) on three different represen-121

tations. These representations consist of a numerical token matching the approach for122

timeseries models, a one-hot encoding approach, and a fingerprint-based method inspired123
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by Mohapatra et. al (see Methods 5.1 for more detail). [19] All models were trained with124

five-fold cross-validation and the performance of each model was assessed using the accu-125

racy. Surprisingly, we observed similar performance across all representations, models, or126

hyperparameter configurations.127

To further guide the model, we focused on labelling the most relevant segment of the128

sequence, leveraging the step-by-step nature of the synthesis process. We hypothesized129

that the sequence preceding the aggregation point, i.e. the amino acid coupling at which130

aggregation occurs, is the most informative to distinguish between aggregating and non-131

aggregating sequences. In contrast, the remaining peptide sequence beyond the aggre-132

gation point contains little to no meaningful information. Therefore, we systematically133

investigated how many amino acids before and after the aggregation point are ideal to134

label as aggregating: We evaluated ranges up to ten amino acids before and after the135

point of aggregation (see Supporting Information Figure 2). The model’s performance136

remained consistent regardless of the modified hyperparameters, models, or representa-137

tion used, provided the sequences were sufficiently long to form secondary structures (¿6138

amino acids). [30] This suggests that aggregation may be determined by factors other139

than peptide sequence or the models were unable to effectively capture the aggregation140

signal from the data.141

Amino acid composition, rather than the sequence itself, influences142

aggregation.143

The consistent results across different models and representations prompted us to ques-144

tion the quality and consistency of our dataset. As a validation experiment, the models145

were trained on a shuffled version of the peptide sequence. Assuming aggregation is highly146

sequence-dependent, inconsistent performance with shuffled data would indicate that the147

models fail to capture a sequence-specific aggregation signal.148

We trained XGBoost models using whole sequence representation on both the origi-149

nal and a randomly shuffled dataset. No significant difference in accuracy was observed150

(0.580±0.035% for original sequences vs 0.579±0.036% for the shuffled sequences). This151

result was consistent across all tested representations and models (see Supporting In-152

formation Section 3). These findings challenge the widely accepted view of aggregation153

as a phenomenon that is highly dependent on peptide sequence. [15] To investigate this154

further, a simplified encoding method was developed, representing each sequence as a 20-155

dimensional vector corresponding to the normalized composition of amino acids. Using156

this minimal representation, the accuracy remains comparable (0.610±0.038%), reinforc-157

ing the notion that amino acid composition might outweigh sequence order in influencing158

aggregation (Figure 3A).159
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training on the original sequences. B) To verify the computational results, four aggregating and four
non-aggregating sequences were synthesized with five reproducible shuffles each. C) For aggregating
test peptides, the point of aggregation remains consistent across the shuffled peptide sequences.
Native UV-Vis traces for Barstar and GLP-1 were adapted from Tamás et al. [20] and Bürgisser et
al. [13].
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To experimentally test whether composition, rather than sequence, determines aggrega-160

tion, we selected eight literature-known test peptides and synthesized five randomly shuf-161

fled variants of each peptide (Figure 3B). Barstar[75–90] [20], hGH[176–191]Y176F [13]162

(abbreviated as hGH), GLP-1 [13], and MYC[123–243] [13] were selected as aggregating163

sequences, and NBDY[53–68] [20], GHRH [21], MYC[421–439], and PCP-4[43–62] as non-164

aggregating sequences. The shuffled sequences were generated through a reproducible165

randomization process to avoid selection bias. The peptides, ranging from 16 to 28 amino166

acids in length, were experimentally evaluated for aggregation behaviour during AFPS.167

In alignment with the in silico results, 19 out of 20 of the shuffled aggregating peptides re-168

tained their aggregation characteristics, while 14 out of 20 of the shuffled non-aggregating169

sequences also maintained their non-aggregating character (Figure 3). The majority of170

peptides preserve their aggregation characteristics, regardless of amino acid order, as long171

as the overall composition remains unchanged. In addition, the aggregation point also172

remains similar for the shuffled sequences (Figure 3C). This suggests that factors beyond173

the sequence, i.e. amino acid composition, play a prominent role in determining peptide174

aggregation rather than sequence information alone.175

Interpretation of individual amino acid contribution to aggregation176

To understand the impact of each individual amino acid on aggregation, we leveraged177

Shapley Additive Explanations (SHAP) values [31]. SHAP enables the quantification of178

the contribution of each amino acid to the aggregation propensity of a peptide sequence.179

In these experiments, the amino acid composition vector was used as the representation,180

establishing a direct link between the composition of amino acids and the model predic-181

tion.182

The analysis revealed distinct patterns in how different amino acids influence aggrega-183

tion (Figure 4). Amino acids such as Ser(t-Bu), Ile, Val, and Thr (t-Bu) were found to184

increase the likelihood of aggregation when present in higher proportions. Conversely, the185

presence of Phe, Asp(t-Bu), Tyr(t-Bu), and Arg(Pbf) tended to reduce aggregation. The186

remaining amino acids appeared to contribute neutrally, without a strong positive or neg-187

ative effect (see Supporting Information Section 5). While our analysis revealed peptide188

composition to be predominantly driving aggregation, other factors influence aggregation189

as well. To this end, we investigated the effect of dipeptide motifs on aggregation, with190

Gly–Ser and Leu–Leu contributing most to aggregation (see Supporting Information Sec-191

tion 6).192

The aggregation-promoting amino acids generally have aliphatic, non-polar side chains,193

which seem to facilitate intermolecular interactions and packing between peptide strands.194

In contrast, amino acids that inhibit aggregation often have aromatic or polar side groups,195

which may increase spacing and disrupt aggregation-prone structures.196
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A Amino acids with the largest contribution to aggregation
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Figure 4: Analysis of amino acids influencing the model’s decision-making the most. The
X-axis represents the amino acid proportion in the sequences, with the Y-axis corresponding to the
importance the model assigns to each data point. A positive value is associated with a higher
likelihood of the model predicting aggregation and a negative one with a lower aggregation chance.
A) Amino acids that contribute the most to aggregation: serine, valine, isoleucine, and threonine.
B) Amino acids that contribute the least to aggregation: arginine, tyrosine, aspartic acid, and
phenylalanine.

Trained models suggest conditions for improved solid-phase peptide197

synthesis198

The optimization of peptide synthesis can be a tedious process: As sequence-dependent199

events such as aggregation are difficult to predict, the usual workflow requires repetitive200

synthesis with the trial-and-error use of known aggregation-reducing tools. Our trained201

model not only enables the prediction of the aggregation propensity of a given peptide202

but also provides insights into how aggregation could be mitigated through strategic mod-203

ifications. By understanding the contributions of specific amino acids, we can predict the204
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Figure 5: Leveraging the model for rational use of aggregation reduction tools to suggest
improved synthesis conditions. A) With the user input sequence and replaceable amino acids, the
trained model ensemble predicts and scores the aggregation property of the sequence and predicts
the contribution of the present amino acids in the early fragment of the peptide (position 2–12). This
enables more effective introduction of aggregation-suppressing moieties. B) Serine and threonine,
two t-Bu-protected amino acids with significant predicted contribution to aggregation, can also be
introduced as pseudoprolines. The latter are established aggregation-reducing tools, which upon
global deprotection yield the native amino acid. C) The potential of the model was tested in two
known aggregating sequences: GB1 and hGH. The serines and threonines with the largest contribution
were selected and replaced, resulting in a significant purity increase of 58% for the GB1 fragment
and 46% for the hGH fragment.

most effective use of aggregation-reducing tools, such as different backbone and side chain205

protecting groups. The algorithm we developed works as follows (Figure 5A): 100 models206

were trained on varying splits of the data, forming an ensemble to avoid bias stemming207

from the relatively small size of the dataset. The user inputs the peptide sequence and the208

amino acids with available aggregation-reducing substitutions. The models then predict209
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whether the given sequence is likely to aggregate. If the sequence is predicted to be aggre-210

gating, the models analyse the key positions (2–12) to identify amino acids that could be211

substituted with their aggregation-reducing counterparts. These potential substitutions212

are then ranked in order of their relative contribution to aggregation, allowing the user to213

prioritize the most impactful changes. By substituting the highest-contributing residues,214

the synthesis process can be optimized to avoid aggregation issues.215

To test this capability, we selected two aggregating sequences, hGH and GB1, and216

pseudoproline-protected amino acid building blocks as a widely used tool to mitigate ag-217

gregation [32]. The use of pseudoprolines is advantageous as they serve as an aggregation-218

disrupting equivalent of the two protected amino acids with the highest contribution,219

Ser(t-Bu) and Thr(t-Bu) (Figure 5B). For hGH, 74% of the models predicted aggrega-220

tion, whereas for GB1 this increased to 90%. Next, the contribution of Ser(t-Bu) and221

Thr(t-Bu) in the 2–12 amino acids from the resin (C-terminus) was assessed. In both cases222

structural motifs contributing to aggregation were identified: Ser(t-Bu) in position 13 for223

hGH and Thr(t-Bu) in position 15 for GB1. We synthesized both optimised sequences on224

the AFPS and, in both cases, we could confirm a reduction of aggregation via in-line UV225

signal and MS-MS. The incorporation of pseudoproline resulted in a crude purity increase226

from 23% to 69% for hGH and 17% to 75% for GB1. In summary, the developed algo-227

rithm can use the trained model to predict the aggregation property and suggest efficient228

incorporation of aggregation-reducing tools to increase synthetic efficiency.229

3 Conclusions230

In this study, machine learning was used as a discovery tool, uncovering a surprisingly231

strong composition-dependence of peptide aggregation. This finding was validated exper-232

imentally by synthesizing forty sequences (eight sequences, each shuffled five times). In233

the process, we developed a simple composition vector as a new peptide representation to234

investigate the aggregation character during SPPS. By leveraging the interpretability of235

this representation, we found that bulkier and more polar side chains or protecting groups236

have a tendency to reduce aggregation, while characteristically aliphatic side chains in-237

crease the likelihood of aggregation. In addition, we demonstrated the practical value238

of these findings by pinpointing the key amino acids contributing to aggregation in a239

given target peptide. By strategically introducing pseudoprolines at these positions, we240

observed a reduction in aggregation and an increase in the purity of two test sequences241

by 58% and 46%, respectively.242

These findings question the understanding of aggregation as a mainly sequence-dependent243

event originating from intermolecular hydrogen bonding between backbones, resulting in244

β-sheet structures. [10, 11, 13, 15, 30] For biological systems, it has been established that245
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amino acids with aliphatic side chains, such as valine or leucine, tend to be large con-246

tributors to β-sheet formation and aggregation. [33,34] Aromatic side chains also seem to247

have a major impact on the aggregation of native peptides and proteins under physiolog-248

ical conditions. [34] Our findings revealed that during SPPS amino acids with aliphatic249

side chains, such as valine or isoleucine, predominantly contribute to aggregation. Sim-250

ilarly, protecting groups that mimic these structures, such as t-Bu-protected serine or251

threonine, exhibit similar behavior during SPPS. In contrast to native peptides, amino252

acids with aromatic side chains or protecting groups, such as phenylalanine or tyrosine,253

tend to reduce aggregation occurrence. Furthermore, aggregation is widely considered254

sequence-dependent, yet our results indicate that during SPPS, amino acid composition255

is more influential. This discovery led to the development of the composition vector, a256

simplified representation of peptides allowing us to predict the onset of aggregation, while257

also recommending mitigation strategies.258

Our machine learning driven approach revealed previously undetected patterns in pep-259

tide aggregation. The strong correlation between peptide composition and aggregation260

emerged only through the use of computational analysis, highlighting how machine learn-261

ing can discover complex relationships in chemical systems. This work demonstrates that262

machine learning’s value in chemistry extends beyond its common applications in prop-263

erty prediction and molecular generation: It serves as a powerful discovery tool that can264

challenge established paradigms and uncover hidden patterns in molecular data.265

4 Methods266

4.1 Computational Methods267

4.1.1 Dataset Curation268

The data used in this study consists of the UV-traces gathered during the SPPS of various269

peptides. We used the dataset published by Mohapatra et. al. containing 769 unique270

syntheses in addition to an internal dataset of 167 unique syntheses. Both datasets were271

combined, and all syntheses containing non-canonical amino acids, steps not performed272

on an AFPS (e.g. batch synthesis of a pre-chain), and synthesis of peptides with fewer273

than five amino acids were removed. As aggregation was reported to primarily occur274

between amino acids 5 and 15, only the synthesis steps of the first 20 amino acids were275

considered. [15] In addition, we filtered all duplicated sequences from the dataset. This276

reduced the size of the combined dataset to 539 unique syntheses. We defined aggre-277

gation as a broadening of the deprotection peak in excess of 20% compared to the first278

deprotection peak. During the synthesis, the addition of histidine and cysteine requires279

changes in the temperature of the reactor causing a broadening of the deprotection peak.280
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Following Tamas et. al. [20] we ignored these peaks and interpolated with the previous281

and subsequent peaks for all histidine and cysteine additions.282

4.1.2 Data Processing283

We used the following processing strategies for the peptide sequences:284

Step-by-Step: Since SPPS builds the peptide sequence one amino acid at a time and285

aggregation information is available for each synthesis step, the problem can be framed286

as predicting whether a peptide sequence has aggregated at a given synthesis step. In287

theory, this approach has multiple advantages. It exposes the model to a considerably288

larger amount of training data (a total of 7.000 synthesis steps in the dataset) and enables289

the practitioner to not only predict whether a peptide will aggregate, but also pinpoint290

where aggregation occurs. In total, this approach yielded 7.000 training samples.291

Whole Peptide: In this approach, we only considered the full peptide sequence and292

labeled it as aggregating or not aggregating. This yields 500 training samples.293

4.1.3 Peptide Representation294

Text: In this approach we leveraged pretrained Transformer models to predict whether a295

peptide aggregates or not. The peptide sequence is used as is and fed into the tokenizer296

of the Transformer model. ESM and BERT models were used.297

Sequence: This representation converts a peptide into a vector by mapping each amino298

acid to a value between 1 and 20. We padded each sequence to the maximum sequence299

length (in this case 20) and fed this vector into the models.300

One Hot Encoding: This approach works similarly to sequence representation. Instead301

of mapping each amino acid to a numerical value, we one-hot encoded each amino acid302

and concatenated the vectors. In addition, we pad the resultant vector to match the303

maximum sequence length.304

Fingerprint: This approach is inspired by Mohapatra et. al. Here we used a Morgan305

Fingerprint [35] with a radius of three and a bit size of 128 to represent each amino acid.306

We concatenated the fingerprint for each amino acid and padded the vector with zero to307

a uniform length regardless of the sequence size.308

Composition Vector: For a given peptide we constructed a normalized vector where309

each index corresponds to a specific amino acid. This vector is built as follows: Assign310

a fixed index to each of the 20 standard amino acids, creating a 20-dimensional vector311

followed by counting the number of occurrences of each amino acid and populating the312

corresponding vector indices. This vector is normalized by dividing by the total number313

of amino acids, ensuring that the vector represents the proportional composition of the314

peptide independent of its length.315
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4.1.4 Models316

All models were trained with five-fold cross-validation and a fixed seed.317

Fine-tuning ESM 2.0 and BERT: For ESM 2.0 and BERT, the implementations pro-318

vided on Huggingface were used. The problem is phrased as a sequence classification319

task for a given peptide sequence. The entire model is fine-tuned. We used a standard320

Huggingface trainer with a learning rate of 2.5e-5, a batch size of 16 and a weight decay321

of 0.01. Adam is used as an optimiser with β1 of 0.9 and β2 of 0.99. We trained each322

model for 15 epochs and evaluated the model with the best validation loss. For ESM323

2.0 we evaluated the sizes varying from 8M, 35M, 350M to 650M whereas for BERT we324

evaluated the base and large checkpoints. For ESM 2.0 we only used pretrained models325

whereas for BERT we both fine-tuned a pretrained model and trained a model for each326

size from scratch.327

All time series models were used as implemented in the SKTIME library [36] using the328

default parameters.329

HIVE COTE V2: We used the implementation as provided by SKTIME with 500330

estimators and a time limit of 10 minutes. [37]331

WEASEL: Weasel is used with Anova and bi-grams using “information-gain” as the332

binning strategy. [38]333

Time Forest: The time series forest classifier is used with a minimum interval of three334

and 200 estimators. [39]335

XGBoost: We used the implementation in the XGBoost library [29] with the default336

settings.337

Scikit-learn Models :338

All scikit-learn models are used with the default hyperparameters. We evaluated the339

Random Forest-, Gaussian Processes-, and KNN-Classifier. [40]340

4.1.5 Explainability341

We used the Shap library [31] to explain the predictions of the models. Specifically, we342

leveraged the TreeExplainer and we trained a total of 50 models on random splits of the343

data to avoid noise in the explanations.344

4.2 Experimental345

4.2.1 Reagents and solvents346

Fmoc- and side chain-protected L-amino acids (Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-347

Asn(Trt)-OH, Fmoc-Asp(Ot-Bu)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(Ot-348

Bu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-349

OH, Fmoc-Met-OH, Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(t-Bu)-350
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OH, Fmoc-Trp(Boc)-OH, Fmoc-Tyr(t-Bu)-OH, Fmoc-Val-OH) andN ’-tetramethyluronium351

hexafluorophosphate (HATU) were purchased from Bachem; O-(7-azabenzotriazol-1-yl)-352

N,N,N ’ and (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate353

(PyAOP) were purchased from Advanced ChemTech; N,N -diisopropylethylamine (i -Pr2NEt,354

DIPEA, 99.5%) was purchased from Sigma-Aldrich; trifluoroacetic acid (TFA, for HPLC,355

≥99.0%), triisopropylsilane (TIPS, 98%) and 3,6-dioxa-1,8-octane-dithiol (DODT, 95%)356

were purchased from Sigma-Aldrich. N,N -Dimethylformamide (DMF) was purchased357

from the from VWR International GmbH; dichloromethane (DCM, ≥99.8%) was pur-358

chased from Fisher Scientific Ltd.; diethyl ether was purchased from Honeywell Riedel-de359

Haën; acetonitrile (MeCN, for HPLC gradient grade, ≥99.9%) was purchased from Sigma-360

Aldrich. NovaPEG Rink Amide resin (0.41 or 0.20 mmol/g loading) was purchased from361

the Novabiochem-line from Sigma-Aldrich Canada Ltd. Piperidine (>99%, for synthe-362

sis) was purchased from Carl Roth GmbH. Formic acid (reagent grade, >95%) and Al-363

draAmine trapping agent added to DMF were purchased from Sigma-Aldrich Canada364

Ltd.365

4.2.2 Automated flow-based peptide synthesis (AFPS)366

Peptides were synthesized on an automated flow system built in the Hartrampf lab, which367

is similar to the published AFPS system. [21] Capitalized letters refer to L-amino acids.368

For all synthesis (referred to as standard AFPS protocol) the following settings were369

used for peptide synthesis: flow rate = 20 mL/min for coupling and deprotection steps,370

temperature = 90 °C (loop) for all canonical amino acids, except histidine and cysteine371

which were coupled at room temperature and 90 °C (reactor). The standard synthetic372

cycle involves a first step of prewashing the resin at 90 °C for 60 s at 40 mL/min. During373

the coupling step, three HPLC pumps are used: a 50 mL/min pump head pumps the374

activating agent, a second 50 mL/min pump head pumps the amino acid, and a 5.0375

mL/min pump head pumps i -Pr2NEt (neat). The 50 mL/min pump head pumps delivered376

0.398679 mL of liquid per pump stroke, the 5.0 mL/min pump head pumps 3.9239 × 10-2377

mL of liquid per pump stroke.378

All peptides were prepared by AFPS on NovaPEG Rink Amide resin (0.41 mmol/g)379

and standard Fmoc/t-Bu protected amino acids (0.40 M in DMF) were coupled using380

HATU (0.38 M in DMF) or PyAOP (0.38 M in DMF) with DIPEA (neat, 3.0 mL/min)381

at a total flow rate of 20 mL/min. For amino acids D, E, F, G, I, K, L, M, P, S, W,382

and Y, a total volume of 6.4 mL of the “coupling solution” (i.e. amino acid (0.20 M),383

HATU or PyAOP (0.19 M), and DIPEA in DMF) was applied for each coupling. For384

amino acids A, C, H, N, Q, R, S, T, and V, a total of 10.4 mL of “coupling solution”385

was applied for each coupling. All amino acids except C and H were preheated at 90 °C386

during the activation step with HATU or PyAOP, whereas C and H were preactivated387

with PyAOP at room temperature. Removal of the Nα-Fmoc group was achieved using388
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20% piperidine with 1% formic acid in DMF at a flow rate of 20 mL/min and a total389

volume of 6.4 mL at 90 °C. Between each coupling and deprotection step, the resin was390

washed with DMF (32 mL) at 90 °C with a flow rate of 40 mL/min. After completion of391

the peptide sequence, the resins were manually washed with DCM (3 × 5 mL) and dried392

under reduced pressure.393

5 Data and Models availability394

The code for generating the data and training the models is freely available on GitHub:395

https://github.com/rxn4chemistry/AI4Aggregation and the data is available on Zen-396

odo: https://zenodo.org/records/14824562397
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Bombarelli, and Bradley L. Pentelute. Deep Learning for Prediction and Optimiza-469

tion of Fast-Flow Peptide Synthesis. ACS Central Science, 6(12):2277–2286, 2020.470
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