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Abstract 

Moving bed reactors (MBRs) are widely used in various industrial processes, making the development of 

mathematical models crucial for their design, optimization, and control. This study presents a semi-

analytical solution (SAS) for a lumped parameter kinetic and heat transfer model of a tubular MBR, where 

a first-order chemical reaction occurs uniformly within the particles. SAS is developed using the concepts 

of the finite analytic method: decomposition of the problem domain into small intervals, keeping the terms 

as linear and evaluated under the conditions at the beginning of each interval, and obtaining local analytical 

solutions in these intervals. SAS is a fast, consistent, and unconditionally stable numerical scheme that can 

handle very stiff systems (SR = 10!"#). A comparison of the SAS results with those of traditional ODE 

solvers – explicit Euler, Heun, Ralston, and Runge-Kutta of 3rd, 4th, and 5th order – shows excellent 

agreement. Moreover, for a case study with Biot number less than 0.11 and fourth Damköhler number less 

than 1.5, the comparison of SAS with a numerical solution (using the finite difference method) of a 

distributed parameter model, shows a maximum relative error of 0.17%, 0.04% and 6.3% for particle 

temperature, fluid temperature and conversion, respectively. SAS is (partially) validated by comparison 

with experimental data from thermogravimetric analysis of kaolinite calcination. In addition, a specific 

methodology for error analysis is presented, which allows rounding and linearization errors to be estimated. 

 

Keywords: Heat transfer; Moving bed reactors; Numerical analysis; Numerical solution; Semi-analytical 

solution; Very stiff systems. 
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1. Introduction 

 There are several technological applications for heat and/or mass transfer between solid particles and 

one or more fluid phases. We can highlight, for example, the pyrolysis of shale oil fines in moving beds 

(Lisbôa, 1987; Bertoli 1989, 2000), the waste tire pyrolysis in moving and fluidized beds (Aylón et al., 

2010; Martinez et al., 2013), the flash kaolinite calcination in moving and fluidized beds (Teklay et al., 

2014, 2015, 2016), the Fischer-Tropsch synthesis in fixed-bed reactors (Apolinar-Hernández et al., 2024),   

as well as others industrial processes described in Shirzad et al. (2019).  

 However, these applications require high equipment efficiency levels, making it essential to model the 

phenomena involved for scaling up and process optimization. Therefore, several studies in MBR modeling 

with analytical and/or numerical solutions have been carried out, such as: Munro and Amundson (1950), 

Leung and Quon (1965), Lisbôa (1987), Bertoli (1989, 2000), Bertoli and Hackenberg (1990), Fan and Zhu 

(1998), Saastamoinen (2004), Meier et al. (2009), Almendros-Ibáñez et al. (2011), Bertoli et al. (2012, 

2015a, 2015b, 2017, 2019, 2020, 2022, 2023, 2024), Yang et al. (2015), Isaza et al. (2016), Medeiros et al. 

(2018, 2021), Tribess et al. (2022).  

 Among these studies, the works of de Almeida Jr. (2016) and Bertoli et al. (2015a) are directly related 

to this investigation. The authors developed a semi-analytical solution of a lumped parameter model (Walas, 

1965; Leung and Quon, 1965) to the butane pyrolysis process, with the assumed conditions: first-order 

chemical reaction in gas phase, reactor with adiabatic walls, particles considered as spheres and inert. The 

model solution was developed using the concepts of the Finite-Analytic Method (FAM) (Chen and Li, 

1980) with the difference that first, using integrating factors, an integral representation of the model 

equations is developed; then, by linearization and discretization of the resulting coupled system of integral 

equations, the interval solution is obtained. 

 Furthermore, the work of Medeiros et al. (2018, 2021) is also directly related to the study presented 

herein. The authors developed a semi-analytical solution for an isothermal wall MBR model to distributed 

parameters in the particles and to lumped parameters in the fluid phase (hereinafter this model and the semi-

analytical solution of Medeiros et al. (2018, 2021) will simply be referred to as DM and SA, respectively), 
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assuming – among other simplifications – irreversible chemical reaction occurring uniformly within 

spherical particles, and constant radiative heat transfer coefficient ℎ$ –  this hypothesis was mitigated by 

means of a corrective step, in which ℎ$ is taken equal to the arithmetic mean between its value at the reactor 

inlet and its value at the discretization point. The solution was developed from the analytical solution of the 

associated homogeneous (linear) problem (Meier et al., 2009) and the spectral expansion of the non-

homogeneous vector. The simulations accurately predicted kaolinite flash calcination's temperature and 

conversion profiles (Teklay et al., 2016). The main distinctions between DM and the model of this study 

are as follows: in the latter, the particle is modeled to lumped parameters, a strategy that simplifies the 

model. Regarding the implementation of the solutions, in SAS, ℎ$ is evaluated locally, i.e., at the 

discretization point, in better correspondence to physical reality. In SA, however, it is assumed to be 

constant throughout the reactor (or corrected, as described above). Furthermore, although the DM is to 

distributed parameters for the solid phase, the SA assumes, for each discretization interval, a uniform 

reaction rate for the particle (calculated at a volumetric average particle temperature). 

 SAS will be developed using FAM concepts (Chen and Li, 1980): decomposition of the problem region 

into small intervals; maintaining terms as linear and evaluated under the conditions at the beginning of each 

interval; obtaining local analytical solutions in these intervals. Although there are studies/applications 

aiming to generalize the FAM (e.g., Civan, 1995, 2009; de Almeida Jr., 2016; de Almeida Jr. et al., 2016; 

Lemos et al., 2016), one of the difficulties in applying of the original finite analytical method is since for 

each case there is a solution. Several applications of the method (see, Chen and Li, 1980) demonstrate this 

difficulty. Among the applications of FAM for chemically reactive systems is the work of Ardestani et al. 

(2015), who used the practical FAM proposed by Civan (1995, 2009) to solve a model to describe the 

transport of contaminants dissolved in groundwater. 

 

2. Mathematical modeling 

The heat transfer model of a moving bed reactor was developed based on the mass and energy 

conservation laws using the single particle approach. Fig. 1 shows schematically a co-current moving bed 
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reactor and the control volume for which the analysis is performed. The MBR is modelled to lumped 

parameters to solid particles and lumped parameters to fluid phase. It is considered tubular, vertical and 

diluted, with each particle surrounded only by the dragging fluid. Inside the particles, a first-order 

irreversible chemical reaction takes place uniformly. Other assumptions are (Bertoli, 1989, 2000, 2020; 

Meier et al., 2009; Medeiros et al., 2021): steady state operation, physical and transport properties uniform 

and constant, spherical particles with a uniform and constant radius and uniformly distributed over the 

cross-section of the reactor, developed flow, fluid temperature and velocity profiles considered uniform in 

the cross-section of the reactor (particles and fluid may have different velocities), conveyor fluid transparent 

to thermal radiation, reactor wall considered as an isothermal blackbody, axial heat dispersion considered 

negligible in comparison with the advective energy flux, wall-particle radiative heat flux described by a 

linearized form of the Stefan-Boltzmann equation, negligible interaction effects between particles and 

particle-wall, and negligible thermal effects due to viscous dissipation or particle friction. 

 

Insert Figure 1 

 

2.1 Governing equations    

Considering the previous hypotheses and introducing the dimensionless particle residence time 

𝜏 ≡ !%!
&!'!(!

𝑡́ = Bi)Fo′	  (1a, b) 

the dimensionless temperatures,  

𝜃*(𝜏) ≡
+"(-#.)0+"$

+!$
  (2) 

𝜃1(𝜏) ≡
+!(-#.)0+!$

+!$
   (3) 

the reactant conversion, and the dimensionless heat source term due to a first order irreversible chemical 

reaction,  

𝑋(𝜏) ≡ 2%$02%(-#.)
2%$

  (4) 
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𝑔(𝜏) ≡ Da34581 − 𝑋(𝜏):  (5) 

and, finally, the dimensionless groups: 

P67 ≡	
!%!

&!'!(!8
  (6) 

𝛽 ≡ 9̇!'!
9̇"'"

  (7) 

𝜑 ≡ 1 + %&
%!

         (8) 

𝜔 ≡ 1 + 𝑟;<
%"
%!

  (9) 

Then, considering the differential control volume in Fig. 1, the LPM is 

=>(.)
=.

= ?0>(.)
@6'

  (10) 

?
A
=B"(.)

=.
= 𝜃1(𝜏) − 𝜃1(∞) + 𝜔 B𝜃*(∞) − 𝜃*(𝜏)C  (11) 

=B!(.)

=.
= 𝜃*(𝜏) − 𝜃*(∞) + 𝜑 B𝜃1(∞) − 𝜃1(𝜏)C + 𝑔(𝜏)  (12) 

subject to the initial conditions (at the reactor’s inlet) presented in Eqs. (13) – (15): 

𝑋(0) = 0  (13) 

𝜃*(0) = 0  (14) 

𝜃1(0) = 0  (15) 

     In the previous equations,  

𝜃*(∞) ≡
+(0+"$
+!$

   (16) 

𝜃1(∞) ≡
+(0+!$
+!$

  (17) 

 

3. Model solution  

3.1 Solution procedure 

 The development of SAS for the Eqs. (10) - (15), proceeds according to the following steps: 

i. The reactor is sectioned into a 𝑘9CD number of intervals. 

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2 ORCID: https://orcid.org/0000-0002-7247-2934 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2
https://orcid.org/0000-0002-7247-2934
https://creativecommons.org/licenses/by/4.0/


 
 

 8 

ii. In the interval 𝑘, i.e., [𝜏E0?, 𝜏E], 𝐾 and 𝜑 are evaluated at temperature 𝑇1(𝜏E0?), and kept constant 

(𝐾E0? and 𝜑E0?, respectively), making the model equations linear. 

iii. The associated linear problem is solved analytically and locally (i.e., in the interval 𝑘).  

iv. The local solution is iteratively regressed to the reactor inlet (𝑘 = 0), thus obtaining the SAS. 

v. A representation of the SAS in continuous variables, is obtained through limit operations and the 

definition of integral. 

 In the next sections, this methodology will be developed. It should be noted, however, that for the 

computational implementation of SAS, only the results of step iii are required. 

 Note that this procedure differs from that of Vanti et al. (2008) and Bertoli et al. (2015a), because in 

these works, given the simplicity of the models studied, the SAS in continuous variables was obtained 

directly from the model equations – i.e., without the previous steps i-iv – through integrating factors.  

 

3.2 Model linearization 

 Initially, the reactor is sectioned into 𝑘9CD intervals. In the 𝑘 interval, i. e., [𝜏E0?, 𝜏E], 𝐾 and 𝜑 are 

evaluated at the temperature 𝑇1(𝜏E0?) and made constant. Then, we can write from Eqs. (10)-(12), the 

following linear system of ordinary differential equations (ODEs): 

=>(.)
=.

= ?0>(.)
@6)*#

'   (18) 

?
A
=B"(.)
=.

= 𝜃1(𝜏) − 𝜃1(∞) + 𝜔8𝜃*(∞) − 𝜃*(𝜏):  (19) 

=B!(.)
=.

= 𝜃*(𝜏) − 𝜃*(∞) + 𝜑E0? B𝜃1(∞) − 𝜃1(𝜏)C + 𝑔E0?(𝜏)  (20) 

Where 

𝑔E0?(𝜏) 	≡ Da345,G0?81 − 𝑋(𝜏):  (21) 

Subject to the following conditions at the beginning of the interval: 

𝑋(𝜏E0?) = 𝑋E0?  (22) 

𝜃*(𝜏E0?) = 𝜃*,E0?  (23) 

𝜃1(𝜏E0?) = 𝜃1,E0? (24) 
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3.3 Local (interval) solution of the linearized model 

 Integrating Eq. (18), and using the boundary condition of Eq. (22), we have 

𝑋E(𝜏) = 1 − (1 − 𝑋E0?)𝑒
0H+*+)*#

,-)*#
' I

  (25) 

Thus, substituting Eq. (25) into Eq. (21), the thermal generation rate becomes  

𝑔E0?(𝜏) = Da345,E0?(1 − 𝑋E0?)𝑒
0H+*+)*#

,-)*#
' I

	  (26) 

 As seen, the approach used causes decoupling of reaction kinetics from energy balances, but not vice 

versa. Therefore, isolating 𝜃1(𝜏) in Eq. (19), we have 

𝜃1(𝜏) = 𝜃1(∞) +
?
A
=B"(.)
=.

+ 𝜔 B𝜃*(𝜏) − 𝜃*(∞)C  (27) 

 Substituting Eq. (27) into Eq. (20), one obtains: 

=B!(.)
=.

= (𝜔𝜑E0? − 1)8𝜃*(∞) − 𝜃*(𝜏): + 𝑔E0?(𝜏) −
J)*#
A

=B"(.)
=.

  (28) 

 Deriving Eq. (19) with respect to 𝜏 and substituting Eq. (28) into the result, then 𝜃1(𝜏) is decoupled from 

𝜃*(𝜏), according to the following equation 

?
A
=.B"(.)

=..
+ B𝜔 + J)*#

A
C =B"(.)

=.
+ (𝜔𝜑E0? − 1) B𝜃*(𝜏) − 𝜃*(∞)C = 𝑔E0?(𝜏)  (29) 

     Now, defining 

Θ*(𝜏) ≡ 𝜃*(𝜏) − 𝜃*(∞)  (30) 

then Eq. (29) is rewritten in the form, 

?
A
=.K"(.)

=..
+ B𝜔 + J)*#

A
C =K"

(.)

=.
+ (𝜔𝜑E0? − 1)Θ* = 𝑔E0?(𝜏)  (31) 

 The solution of Eq. (31) (inhomogeneous) can be obtained by the Complementary Function Method, in 

the form (see, for instance, Butkov, 1973) 

Θ*(𝜏) = Θ*(%L9)(𝜏) + Θ*(1C$-)(𝜏) (32) 

Where Θ*(%L9) is the general solution of the associated homogeneous (complementary function) and  

Θ*(1C$-) is a particular solution. 
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     The solution of the associated homogenous Θ*(%L9) – a 2nd order ODE with constant coefficients –, is 

standard (Wylie and Barrett, 1990): 

Θ*(%L9)(𝜏) 	= 𝑏?,E0?𝑒0$#,)*#. + 𝑏M,E0?𝑒0$.,)*#. (33) 

with characteristic equation with the following roots 

𝑟(?,M),E0? =
0(ANOJ)*#)±Q(AN0J)*#).ORA

M
= 0(ANOJ)*#)±Q(ANOJ)*#).ORA(?0J)*#)

M
  (34a-d) 

 The solution Θ*(1C$-) is obtained by the method of undetermined coefficients (Jenson and Jeffreys, 

1963): 

Θ*(1C$-)(𝜏) = 𝑏!,E0?	𝑒$0,)*#.   (35) 

Where  

𝑟!,E0? =	−
?

@6)*#
'    (36) 

𝑏!,E0?𝑒$0,)*#.)*# ≡ 𝑏!,E0?7 = A	TU123,)*#(?0>)*#)
$0,)*#
. O(ANOJ)*#)$0,)*#OANJ)*#0A

  (37a, b) 

 Thus, substituting the results of Eqs. (33) and (35) into Eq. (32), the general solution of Eq. (35) is 

Θ*(𝜏) = ∑ 𝑏V,E0?𝑒$4,)*#.!
VW?      (38) 

That is, 

𝜃*(𝜏) = 𝜃*(∞) + ∑ 𝑏V,E0?𝑒$4,)*#.!
VW?      (39) 

 Substituting Eq. (39) into Eq. (27), we obtain the local solution for the particle temperature 

𝜃1(𝜏) = 𝜃1(∞) + ∑ B$4,)*#
A

+ 𝜔C𝑏V,E0?𝑒$4,)*#.!
VW?   (40) 

 The coefficients  𝑏?,E0? and  𝑏M,E0? are determined from Eqs. (39) and (40), and the conditions Eqs. (23) 

and (24), as follows: 

𝑏?,E0?𝑒$#,)*#.)*# ≡ 𝑏?,E0?7 =
X0,)*#
' Y$0,)*#0$.,)*#ZOYANO$.,)*#Z[B",)*#0B"(\)]0A[B!,)*#0B!(\)]

$.,)*#0$#,)
  (41a, b) 

𝑏M,E0?𝑒$.,)*#.)*# ≡ 𝑏M,E0?7 =
X0,)*#
' Y$0,)*#0$#,)*#ZOYANO$#,)*#Z[B",)*#0B"(\)]0A[B!,)*#0B!(\)]

$#,)*#0$.,)*#
   (42a, b) 

 

3.4 Difference equations 
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 Difference equations to integrate the system of Eqs. (10)-(15) are obtained from Eqs. (25), (36), (39) 

and (40), as follows: 

𝑋E = 1 − (1 − 𝑋E0?)𝑒$0,)*#(.)0.)*#)                           (43) 

𝜃*,E = 𝜃*E0? + ∑ 𝑏V,E0?(𝑒$4,)*#.) − 𝑒$4,)*#.)*#)!
VW?         (44) 

𝜃1,E = 𝜃1,E0? + ∑ B$4,)*#
A

+ 𝜔C𝑏V,E0?(𝑒$4,)*#. − 𝑒$4,)*#.)*#)!
VW?           (45) 

 In the above equations, (𝜏E0? ≤ 𝜏 ≤ 𝜏E)	and	(1 ≤ 𝑘 ≤ 𝑘9CD).  

 Eqs. (43)-(45), together with Eqs. (34), (36), (37), (41) and (42), are used to calculate, recursively, the 

conversion and temperatures along the MBR. Alternatively, and for numerical stability purposes, one can 

rewrite the above equations as follows: 

𝑋E = 1 − (1 − 𝑋E0?)𝑒$0,)*#^.                           (46) 

𝜃*,E = 𝜃*,E0? + ∑ 𝑏V,E0?7!
VW? (𝑒$4,)*#^. − 1)  (47) 

𝜃1,E = 𝜃1,E0? + ∑ B$4,)*#
A

+ 𝜔C𝑏V,E0?7!
VW? (𝑒$4,)*#^. − 1)  (48) 

Where 𝑏?,E0?7 , 𝑏M,E0?7  and  𝑏!,E0?7 , are respectively given by Eqs. (41), (42) and (37), and 

Δ𝜏 = 𝜏E − 𝜏E0?  (49) 

 

3.5 SAS (recursive solution) 

  From Eqs. (46)-(48) and using the inlet conditions Eqs. (13)-(15), the SAS is obtained by recursion: 

𝑋E = 1 − 𝑒∆. ∑ $0,5*#)
56#   (50) 

𝜃*,E = ∑ ∑ 𝑏V,a0?(𝑒$4,5*#.5 − 𝑒$4,5*#.5*#)!
VW?

E
aW?      (51) 

𝜃1,E = ∑ ∑ B$4,)*#
A

+ 𝜔C𝑏V,a0?(𝑒$4,5*#.5 − 𝑒$4,5*#.5*#)!
VW?

E
aW?   (52) 

   

3.6 SAS in continuous variables 

 A representation of SAS in continuous variables can be obtained from Eqs. (50)-(52) by making ∆𝜏 → 0 

(i. e. , 𝑘9CD → ∞), summing the series, and using the definition of definite integral. Proceeding in this way, 

one obtains: 
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𝑋(𝜏) = 1 − 𝑒∫ $0
+
7 =.  (53) 

𝜃*(𝜏) = ∑ ∫ 𝑏V𝑟V𝑒$4.𝑑𝜏
.
"

!
VW?       (54) 

𝜃1(𝜏) = ∑ ∫ B$4
A
+ 𝜔C 𝑏V𝑟V𝑒$4.𝑑𝜏

.
"

!
VW?       (55) 

Where  

𝑟(?,M) =
0(ANOJ)±Q(AN0J).ORA

M
   (56a, b) 

𝑟! = − ?
@6'

  (57) 

𝑏? =
X0($00$.)c&0+O(ANO$.)[B"(.)0B"(\)]0A[B!(.)0B!(\)]

$.0$#
𝑒0$#.  (58) 

𝑏M =
X0($00$#)c&0+O(ANO$#)[B"(.)0B"(\)]0A[B!(.)0B!(\)]

$#0$.
𝑒0$..  (59) 

𝑏! =
ATU123Y?0>(.)Z

$0.O(ANOJ)$0OAJN0A
𝑒0$0.   (60) 

     In Eqs. (53)-(60), the parameters 𝑟V, 𝑏V (𝑙 = 1, 2, 3), Da345, Py7, and 𝜑 are now continuous functions of 

𝑇1(𝜏). Thus, the SAS in continuous variables is expressed by a system of coupled implicit integral 

equations. In Appendix B, it is shown that SAS in continuous variables satisfies the model equations and, 

therefore, is an exact representation of the model.  

 

4. Residence time scales  

To deepen the physical understanding of the results, the following particle residence time scales (see 

also Bertoli et al., 2012, 2016, 2017, 2019, 2022; Tribess et al., 2022) are introduced in Table 1.  

 

Insert Table 1 

 

Once these scales are defined, it is interesting to note that: 

Bi) =
-#
-.

, Bid =
-#
-0

, Daef =
-#
-8

, Da345 =
-.
-8

,   Fo′ = -'

-#
, Py = -9

-#
  (61a-l) 
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Py7 = -9
-.

, ThM = -#
-9

,  𝛽 = -.
-:

, 𝜑 ≡ 1 + -.
-0

, τ = -'

-.
, 𝜔 = 1 + -:

-;
   

In addition to enabling a clear physical understanding of the system parameters, scale analysis is also 

useful in the preliminary model selection. This analysis is postponed to Section 7.4.  

 

5. Case studies  

 The case studies evaluated by Medeiros et al. (2021) were chosen for analysis carried out herein, for 

comparison purposes: 

a) Heat transfer in a moving bed of oil shale fines (Lisbôa, 1987)    

 Oil shale fines are a residue from moving bed pyrolysis of oil shale. One solution for using these wastes 

is pyrolysis in co-current MBR (Lisbôa, 1987). In this sense, the heating of a mixture of oil shale fines and 

air, in a co-current moving bed is selected as case study a. Specifically, we will look at Thermal Test (TT) 

No. 4 of Lisbôa (1987), with the following modifications introduced here: 𝐿 = 10	m,	𝑇; = 973.15	K,	and 

a first order reaction in the solid phase is assumed, with the following hypothetical data: 𝐴 =

2.0 × 10?M	s0?, 𝐶gh = 400		kg/m!, 𝐸 = 	163.0		kJ/mol,  ∆𝐻( = 2534.8	kJ/kg. TT No. 4 of Lisbôa (1987) 

is also described in Bertoli (2000) and Bertoli et al. (2019). 

b) Flash calcination of kaolinite in a moving bed (Teklay et al., 2016) 

 The flash calcination of kaolin-rich clays is an important aspect in the metakaolin production. The 

process is carried out in moving bed reactors (Teklay et al., 2015) or fluidized bed reactors (Salvador, 

1995), at temperatures between 450 °C and 750 ºC, producing only water vapor (Salvador, 1995; Sperinck 

et al., 2011; Teklay et al., 2016) and metakaolin, according to the reaction described in Eq. (62) (Bridson 

et al., 1985; Slade et al., 1992). 

Al2Si2O5(OH)4 	
   ∆   
s⎯u	 Al2O3	. 2 SiO2 + 2 H2O   (62) 

In this work, kaolinite calcination kinetics are selected as case study b, and will be represented in a 

simplified way by the kaolinite dehydroxylation step. The conditions, properties and correlations are those 

used by Teklay et al. (2014) – also described in Medeiros et al (2021). Air is chosen as the dragging fluid. 
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6. Methodology  

6.1 SAS verification and relative performance 

The SAS is initially verified by comparison with the linear model solution. case study a (Section 5) is 

used as a benchmark, with the following modifications: ℎ$ and 𝐾 evaluated at 𝑇1 = 597.2	K. Thus, 

nonlinearities are removed from the model. Two discretization levels, 𝑘9CD = 1 and 𝑘9CD = 𝑁, are 

considered. The discretization of the SAS with 𝑘9CD = 1 is particularly important since it represents the 

exact linear problem solution. Moreover, the linearized solution allows a comprehensive investigation of 

the error sources in the SAS, as described in Section 6.2.1.  

Then, we proceed by considering 𝑇1 varying in the calculation of 𝐾 and ℎ$ and comparing the SAS 

results with well-known fixed-step numerical methods: explicit Euler, Heun, Ralston, and Runge-Kutta of 

3rd, 4th and 5th order (all these methods were implemented by us). All calculations are performed on a 

computer with an Intel® Core™ i5-10400F CPU running at 2.9 GHz (6 cores, 12 threads), 64 GB RAM, 

and Windows 11 Pro 64-bit. 

 

6.2 Model validation  

The model (partial) validation is made by comparing the thermogravimetric analysis (TGA) data for 

calcination of kaolinite (Teklay et al., 2014) – see case study b – with model predictions. Validation is said 

to be partial because the TGA only partially represents the conditions of a MBR. For the SAS to mimic the 

operating conditions of the TGA, the following settings are made (see Medeiros et al., 2021): 𝑡́ ≡ 𝑧/𝑣1 = 

TGA clock time, 𝑣1 = 𝑣*/𝜀, ℎ* and ℎ$ low enough ( » 0) to nullify thermal exchanges with the wall, 𝑐* 

sufficiently high (10?") so that 𝑇* does not change through heat exchange with the particles, but changes 

as a linear function of the heating rate and particle residence time (= 298 + 40𝑡́), and 𝑇; is changed to the 

equilibrium temperature 𝑇ci,E, calculated for each 𝑘 section.  

 As a kind of cross-validation, SAS is compared with FD – the solution of DM using Finite Differences 

–, and with the Semi-Analytical solution of Medeiros et al. (SA) (a description of DM can be found in 

Appendix A). In the FD, the DM is discretized using a second order approximation for the spatial 
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differential operators. The model was solved with the ODE23tb solver.  

 

6.3 Stability 

 Given the semi-analytical character, the roots (eigenvalues) and form of the SAS are known. Thus, SAS 

stability analysis can be carried out in a simple way, by analyzing the signal of the roots and inspecting its 

implementation (Press et al., 1992).  

 

6.4 Consistency and convergence 

    To test consistency, a methodology analogous to that for verifying an analytical solution is introduced: 

SAS in continuous variables is substituted into the model equations. Then, if the system of model equations 

is satisfied, consistency is demonstrated. This methodology is more general than that of Vanti et al. (2008) 

and Bertoli et al. (2015a), since in these works, given the simplicity of the models studied, the SAS in 

continuous variables can be obtained directly from the model equations (see comments in Section 3.1) – 

and, consequently, consistency is ensured –. If stability and consistency are demonstrated, SAS 

convergence is automatically guaranteed according to the Lax-Richtmyer equivalence theorem (Lax and 

Richtmyer, 1956). 

 

6.5 SAS error analysis 

 Initially, we define 𝜁 as a generic variable that represents 𝑇*, 𝑇1 or 𝑋. Then, for 𝜁 calculated with 𝑘9CD 

intervals, the following SAS error expressions are written: 

𝐸j;E<=>
+ (𝜏) ≡ 𝜁E<=>(𝜏) − 𝜁(𝜏) = 𝐸j;E<=>

( (𝜏) + 𝐸j;E<=>
l (𝜏)  (63) 

RMSEj;E9CD ≡ ~∑ ?
m

m
aW? B𝐸j;E<=>8𝜏a:C

M
  (64) 

Where 𝐸j;E<=>
+  is the total error, given by the sum of the machine rounding error, 𝐸j;E<=>

(  (roundoff error), 

with the error due to model linearization, 𝐸j;E<=>
l  (linearization error), and RMSEj;E<=> is the Root Mean 

Squared Error (RSME). The following subsections present the analysis methodology for these types of 

error. 
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6.5.1 Roundoff error  8𝐸j;E<=>
( :  

 In this work, roundoff errors are estimated using two independent methods: the first – known from the 

literature – is based on accounting for floating point operations; and the second – developed here – makes 

use of characteristics of SAS. These methods are described respectively below. 

• Method A – Estimation based on expressions from the literature  

 The random and non-random round-off errors in the calculation of 𝜁 can be estimated as a function of 

number of intervals from assessment of the number of arithmetic operations of each calculation. The code 

developed by Qian (2023) was used to calculate the number of arithmetic operations (FLOPS) for the SAS, 

considering an average (and constant) 𝑇1 in the calculation of ℎ$ and 𝐾, for each 𝑘9CD tested. Then, 

estimates of random and non-random roundoff errors were performed by multiplying the machine precision 

(𝜖m = 	2.220446049250313 × 100?n) by FLOPS at the power ½ and 1, respectively (Press et al., 1992). 

• Method B – Estimation based on SAS characteristics 

 SAS can provide an excellent estimate of this error if we consider that the linearized model solution is 

exact. If 𝐾 and ℎ$ are made constant – e.g., at an average temperature along the reactor –, SAS can be used 

to solve the linear problem. Estimating 𝐾 and ℎ$ at an average temperature, one has approximately the 

same order of magnitude for the arguments of the exponential functions and for the coefficients of the 

solution, in comparison with the non-linear problem. For the same number of intervals, the SAS can be 

programmed to perform approximately the same number of operations both on the linear problem and on 

the corresponding non-linear problem. For a given 𝜏, the difference between the results of the linear 

problem, using 𝑘9CD = 1 and 𝑘9CD = 𝑁,  is due only to the roundoff error. As a result of the previous 

considerations, it is concluded that an excellent estimate of 𝐸j;E<=>
(  can be obtained from the difference 

between the results of the SAS for the linear problem with 𝑘9CD = 1 and with 𝑘9CD = 𝑁. 

 

6.5.2 Linearization error 8𝐸j;E<=>
l :  

 To evaluate the linearization error, the following iterative procedure is adopted:  
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(a) A set 𝑆 = �𝑘9CD?, 	𝑘9CDM, ⋯ , 𝑃� of increasing 𝑘9CD intervals is composed, assuming that for each 

element  𝐸j;E<=>
( ≪ 𝐸j;E<=>

l , and  that  𝐸j;ol ≪ 𝐸j;E<=>po
l ; 

(b) the 𝐸j;E<=>
l for calculations with 𝑘9CD intervals is given approximately by the following expression: 

𝐸j;E<=>
l 8𝜏a: ≅ 𝜁E<=>po8𝜏a: − 𝜁o8𝜏a:;  (65) 

(c) the RMSE for calculations with 𝑘9CD intervals is given approximately by the following expression: 

RMSEj;E<=> ≅ ~∑ ?
m

m
aW? 8𝜁E<=>po8𝜏a: − 𝜁o8𝜏a:	:

M;  (66) 

(d) the linearization error trend line is plotted as a function of  𝑘9CD; 

(e) if the results agree with the assumptions in (a), the procedure ends, otherwise a new choice of  𝑆 is made 

and the procedure is restarted. 

 

6.6 Stiffness 

 Stiffness is a characteristic of interest in the integration of an ODE system and is normally quantified by 

the stiffness ratio (SR) (Davis, 1984). In the present study, the SR for the linearized model can be defined 

in the following form  

SR ≡
max
$
|$$|

min
$
|$$|
	,  𝑖 = 1, 2, 3 (67) 

 Although the model under study is a nonlinear system of ODEs, whose stiffness may vary over time 

(Davis, 1984), SAS is based on "interval solutions of the linearized model" whose form is independent of 

them. Therefore, if for a given SR (say SR?) it is possible to integrate the model equations keeping 𝐾 and 

ℎ$ constant – i.e., the linear problem –, then, the integration of the nonlinear problem can be guaranteed as 

long as SR(𝜏) < SR? for (0 ≤ 𝜏 ≤ 𝜏l). Therefore, to evaluate SAS with respect to system stiffness, the SR 

is varied over several orders of magnitude and the performance of SAS is compared with that of the fixed-

step ODE integrators from Section 6.1 and with two implicit variable-step methods from MATLAB 

(MATLAB R2024b, The MathWorks, Inc.): ODE23s and ODE15s, which are specific to stiff problems. 

The variation in the order of magnitude of the SR is achieved through the variation of the pre-exponential 
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factor (𝐴). This artificial variation can generate non-physical results – for example, negative absolute 

temperatures –, however, this does not interfere with this numerical analysis. 

 

7. Results and discussion 

7.1 Model verification 

SAS is initially verified by comparison with the analytical solution of the linear (and simpler) model, 

and with results from other numerical methods. Case study a (Section 5) with the modifications: ℎ$ and 𝐾 

evaluated at 𝑇1 = 597.2	K, is used in the comparison. Thus, following the methodology of Section 6.1, two 

discretization levels are considered, 𝑘9CD = 10R and  𝑘9CD = 1. As illustrated in Fig. 2, excellent 

agreement (within the machine error) was obtained for 𝜁 at the reactor outlet, for the different discretization 

levels studied. 

 

Insert Figure 2 

 

 Then, we proceed to investigate the SAS performance considering variable 𝑇1 in calculating ℎ$ and 𝐾.  

Fig. 3 shows the predictions for 𝜁 profiles – numerical solutions of Eqs. (10)-(15) – from SAS and the 4th 

order Runge-Kutta method, resulting in excellent agreement between the different solution methods. 

 

Insert Figure 3 

 

 In Fig. 4, further comparisons for the conditions described for Fig. 3 are performed with other numerical 

methods (explicit Euler, Heun, Ralston, and Runge-Kutta of 3rd and 5th order), also showing excellent 

agreement. For the relative difference defined by Eq. (68), a maximum of 𝒪(100?)% was found for 𝑇* and 

𝑇1. 

 ∆𝜁% = rj?@0jABAr
jABA

× 100 (68) 
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Insert Figure 4 

 

 Figure 5 presents a comparison of the computation time of different numerical methods, for integrating 

the model equations over the length of the reactor, under the conditions described in Fig. 4.  

 

Insert Figure 5 

 

 As indicated in Fig. 5, the SAS calculation time is approximately half that observed in the solution by 

the explicit Euler method. The advantage of the SAS is, therefore, evident: not only is it unconditionally 

stable – unlike the explicit numerical methods that can diverge depending on the step size –, but it also 

requires significantly less computation time when compared with the other numerical methods. However, 

as will be demonstrated in Section 7.3.4, if 𝑘9CD < 10M, SAS behavior becomes erratic. 

 

7.2 Model validation 

 Following the methodology described in Section 6.2, the (partial) validation of this model is performed 

by comparison with TGA data from Teklay et al. (2014) – case study b –. For a heating rate of 40 K/min, 

Fig. 6 shows the SAS results using the dehydroxylaxion kinetic parameters (K1 − K8) from Table 2 and 

the TGA data from Teklay et al. (2014). 

 

Insert Table 2 

Insert Figure 6 

 

 As seen in Fig. 6, despite the simplification in the kaolinite calcination kinetics – simplified in the 

analysis, to the kaolinite dehydroxylation step –, for sets K2, K3 and K6 there is a reasonable agreement 

between the model predictions and the TGA data, partially validating the model. Moreover, as can be 

noticed from Fig. 7(A), there is excellent agreement between SAS and SA on the TGA issue, reinforcing 
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the consistency of the results obtained herein. However, comprehensive validation of SAS requires 

comparison with MBR data.   

 Figure 7(B) shows a comparison between SAS and the baseline case of Teklay et al. (2014), for the 

evolution of particle temperature as a function of residence time when suddenly exposed to a hot gas 

environment (i.e., under an instantaneous heating condition, differently from the controlled heating used in 

the TGA test presented in Fig. 6) In this scenario, Tpi = 298.15 K, Rp = 50 µm, and Tg = 1,273.15 K. 

Moreover, Figs. 7(C)-(D) presents a comparison of the SAS with the SA and the FD, respectively, 

performed according to Section 6.2. All results consider case study b. 

 

Insert Figure 7 

 

 As can be seen, the results agree satisfactorily, enabling cross-validation between the present model and 

the others mentioned. Note, however, that the model by Teklay et al. (2014) – more complex in the 

description of the phenomena in the solid phase and the chemical kinetics of the flash calcination of 

kaolinite – is intended for the simulation of the calcination of kaolinite in a fluidized bed reactor (for which 

𝑡́ should be interpreted as the “clock” time). This good predictive ability of SAS compared to more complex 

models is discussed a little in section 7.4. 

 

7.3 Numerical analysis 

 In this section, a numerical analysis of the SAS is developed, aiming at the following aspects: stability, 

consistency and convergence, roundoff and linearization errors, as well as the ability to solve stiff problems. 

 

7.3.1 SAS stability 

 By definition, 𝜑E0? > 1	and PyE0?7 > 0. Thus, from Eqs. (34c, d) and (36), we have 𝑟V,E0? < 0  

(𝑙 = 1 − 3). Therefore, following the methodology in Section 6.3, it can be concluded that the 

implementation of SAS in the form of Eqs. (46)-(48) is unconditionally stable, since a perturbation on a 
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single value of 𝜁E0?	produces a variation in subsequent values that does not increase step by step, regardless 

of the value of Δ𝜏 (Gear, 1971).  

 

7.3.2 Consistency and convergence 

 Following the methodology of Section 6.4, the SAS in continuous variables – Eqs. (54)-(61) – is 

substituted into the model equations, i.e., Eqs. (10)-(15). It is shown in Appendix B that by carrying out 

this substitution, each equation in the model is satisfied. Thus, for ∆𝜏 → 0, SAS converges to the exact 

solution and, therefore, consistency is demonstrated. Since the stability of SAS has already been 

demonstrated, these results allow us to conclude (according to Section 6.4) that SAS is a convergent 

numerical scheme. 

 

7.3.3 Roundoff error  

 Figure 8(A) presents the estimates of absolute roundoff error for 𝜁, as a function of 𝑘9CD, for case study 

a, considering ℎ$ and 𝐾 evaluated at 𝑇1 = 597.2	K. The results are presented according to the methods 

described in Section 6.5.1: A (markers), and B (solid and dashed lines for random and non-random round-

off errors, respectively). Using method B, the roundoff error was estimated by comparing the SAS at each 

𝑘9CD considered (10? to 10s) with the exact solution at 𝑘9CD = 1. 

 

Insert Figure 8 

 

As can be seen, for 𝑘9CD > 10R the values obtained with method B are located at intermediate points to 

those obtained with method A, thus demonstrating consistency. 

 Figure 8(B)-(D) presents the 𝜁 profiles for the conditions described for Fig. 8(A) as a function of 𝑘9CD. 

Interestingly, in Figs. 8(B)-(D) the estimated roundoff error presents regular behavior, only when 𝑘9CD >

10!. This is since for 𝑘9CD > 10!, SAS maintains a pattern in the 𝜁 profiles, that is refined as 𝑘9CD 

increases.  
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7.3.4 Linearization error 

 Figure 8(E) presents the estimates of the linearization error for 𝜁, as a function of 𝑘9CD, for case study 

a. The results were obtained according to the methodology in Section 6.5.2, considering 𝑃 = 10s. For 

𝑘9CD > 10M the linearization error decreases as 𝑘9CD increases, as expected, with a linear behavior in a 

log-log plot. For 𝑘9CD < 10M, however, the linearization error behavior is erratic, as observed in Fig. 8(B)-

(D), i.e., the physics of the problem is not effectively captured in this discretization level. Only after a 

certain onset, in this case identified as 𝑘9CD > 10M, the actual profiles for 𝜁 are adequately captured, and 

successive refinements are obtained as 𝑘9CD increases, allowing for proper interpretation of the solution 

performance – in this case in terms of linearization error. 

 Figure 9(A) presents the root mean squared linearization error for 𝑇* as a function of 𝑘9CD0?  for the 

conditions described for Fig. 8(E). The calculations were performed following the methodology described 

in Section 6.5.2, considering 𝑃 = 10s and,  ℎ$ and 𝐾 varying with 𝑇1. 

 

Insert Figure 9 

 

 Figure 9(B)-(D) details in a semilogarithmic scale, the behavior of the linearization error for large values 

of 𝑘9CD. As discussed in Appendix C, for very large values of 𝑘9CD, exact knowledge of this behavior is 

only accessible through theoretical analysis. However, observing the behavior of RMSEj;E<=>	in these 

figures, one can consistently infer the theoretical results Eqs. (C1) and (C2). 

 Among the various functions proposed to adjust RMSEj;E9CD as a function of 𝑘9CD0?  (see Supplementary 

Material), the hyperbolic sine function  

𝑓(𝑘9CD0? ) = 𝑎 sinh(𝑘9CD0? )  (69) 

showed an 𝑅M = 0.9999 for all 𝜁, with RMSEj;E<=>	of  5.606 × 100n, 8.074 × 100n and  3.441 × 100t 

for 𝜁 = 𝑇* , 𝑇1 and	𝑋, respectively. This fitting function is interesting because it has the theoretical properties 
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𝑃?	 and 𝑃M	 of Appendix C. Furthermore, as 𝑘9CD0?  increases, RMSEj;E<=>	exhibits compatible behavior. This 

is the case except for 𝑘9CD < 10M, as will be seen below.  

 As discussed earlier, the phenomena are properly described in Figs. 9(B)-(D) for 𝑘9CD > 10M, and 

refinement is obtained as 𝑘9CD increases. Moreover, a limiting discretization level with 𝑘9CD = 10t  

should be adopted considering an error control strategy with the machine error three orders of magnitude 

lower than the linearization error. From the previous results and Fig. 9, it can be concluded that the analysis 

meets item (e) of the methodology in Section 6.5.2 and can therefore be completed.  

                                                                              

7.3.5 Stiffness ratio (SR)  

 Following the methodology of Section 6.6, Table 3 lists the order of magnitude of SR that the different 

numerical methods were able to integrate, for case study a, with the following modifications:  𝐴 variable, 

𝐸 = 1200	 u
vwx

 , and, ℎ$ and 𝐾 evaluated at 𝑇1 = 697.2	K.  

 Table 3 clearly shows the superior performance of SAS, followed by the implicit variable-step methods 

– ODE23s and ODE15s – and the other explicit fixed-step methods (Euler, Ralston, Heun, Runge-Kutta of 

3rd, 4th, and 5th order). Notably, SAS was able to integrate for all tested SRs. Also, the implicit variable step 

methods – ODE23s and ODE15s – stand out for solving very stiff systems, with SR = 10?n. ODE23s is a 

single-step and implicit solver based on the modified Rosenbrock formula of order 2, designed for 

moderately stiff ODEs. On the other hand, ODE15s is a multi-step and implicit solver based on the variable-

order backward differentiation formula (BDF) method, designed for stiff ODEs and differential-algebraic 

system of equations. 

 Figure 10 illustrates the behavior of calculation time for ODE23s and ODE15s, depending on the SR 

tests in Table 3 

Insert Figure 10 

 
 Depending on the SR, the calculation time for ODE solvers can become very high. This can be easily 

seen in Fig. 10 where the ODE15s calculation time presents an exponential behavior.  
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  In Tests 10, 11 and 12, with SR 8.57 × 10My, 8.57 × 10!" and, 	8.57 × 10!?, respectively, the ODE15s 

computation time was 0.179 s, 0.625 s and 9.582 s, respectively. To make the calculation time behavior 

clear, Test 13 (SR = 	8.57 × 10!M) was not shown in Figure 10. However, its calculation time was 676.73 

s with 5,735,317 steps. It should then be considered notable that for SR = 	8.57 × 10!M, SAS integrated the 

system in 5.515 s with 100,000 intervals. Another point to be highlighted is that the highest SR integrated 

with SAS for this case study was	4.2864 × 10!"#, with a computation time of 6.81365 s. This is a very 

significant result. 

 The exceptional performance of SAS can be explained based on its unconditional stability (Section 

7.3.1) associated with a relatively small number of operations in each interval. Hence, SAS has the 

capability to address stiff problems both numerically and computationally. 

 

7.4 Scale analysis for MBR model selection  

Model selection must consider accuracy and required resources. Thus, the simplest model with 

sufficiently accurate results is indicated (Çengel and Ghajar, 2011). In the literature, there are several 

detailed studies on lumped model selection criteria for different types of moving bed heat exchangers 

(Depew and Farbar, 1963; Kern and Hemmings, 1978; Fan and Zhu, 1998; Saastamoinen, 2004; Haim and 

Kalman 2008; Bertoli et al., 2017, 2020). In the context of processes involving chemical reactions in the 

solid phase, the literature is less extensive: Pyle and Zaror (1984) studied the pyrolysis of solids at low 

temperatures and proposed the use of small 𝐵 and small Py7 as selection criterion to lumped parameter 

model for the solid phase. In their modeling, the temperature of the fluid was assumed constant and equal 

to that of the furnace wall. This assumption makes the model simpler than that discussed in the present 

study. Another work to be considered is that of Lédé and Authier (2015). These authors, studying the 

biomass fast pyrolysis, proposed 𝐵1 < 0.1	as selection criterion to lumped parameter model for the solid 

phase, where 𝐵1 is calculated at the initial conditions of the process.  

As is evident, in the presence of chemical reactions, the analysis of the topic in question becomes more 

complex. Therefore, in this work, only an exploratory approach is carried out, based on scale analysis. Thus, 
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based on the model assumptions and the scales in Table 1, it can be said that the present model – to lumped 

parameters in both phases – is more suitable for systems with negligible mass transfer effects, and small 

Bi,	 Daef and ThM, respectively. The choice of small values for these dimensionless numbers make the 

conduction scale 𝑡? (see Table 1) considerably smaller than the other particle phenomena scales. However, 

it is understood that this may be a very conservative criterion and therefore an initial assessment is carried 

out in the next section. 

 

7.5 SAS selection criteria - quantitative analysis 

 To verify the previous statements based on the scale analysis, as well as to obtain some quantitative 

information about the SAS selection criteria, a comparative analysis of SAS with FD is developed. This 

analysis is conducted with Bi and Daef, as variables and 𝐸( as the response, which is the relative error 

between SAS and FD, defined for the particle temperature and for the conversion by the following 

expressions, respectively  

 

𝐸(,+1% = r+!C0+Dr
+!ABA

× 100,   𝐸(,>% = r>!C0>Dr
>E%E

× 100  (70a, b) 

For the fluid temperature, the relative error, ∆𝑇*(%)	, is given by Eq. (68). 

  Figure 11(A, B, C) shows the 𝜁 profiles as a function of Fo7 calculated by SAS and FD and the associated 

error between SAS and FD, Eq. (68) for 𝑇* and, Eq. (70) for 𝑇1 and 𝑋. Fig. 11(D) shows the variation of 𝐵 

and |Daef| with	 Fo7 and, Fig. 11(E) shows the variation of Py7 and ThM with	 Fo7. These results were 

obtained for case study a, with the modifications: 𝑇; = 573.25	K, 𝐸 = 100 Gu
vwx

  and  𝑘1 = 1.4 z
v∙|

	. 

 

Insert Figure 11 

 As can be seen in Fig. 11, for	𝐵 < 0.038 and |Daef| < 1.5, there is excellent agreement between the 

results of the two methods. The maximum relative error was 0.17%, 0.04%, and 6.3% for the particle 

temperature, fluid temperature, and conversion, respectively. As illustrated in Figure 11, the following 
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variations are also observed in the calculations: 14.8 × 100R < ThM < 10.3 and		99.0 × 100R < Py7 <

68.5 × 10M. 

 Figure 12 shows the 𝜁 profiles for case study a with the modifications: 𝐸 = 65.97	 Gu
vwx

,  𝑘1 = 0.1	 z
v∙|

 

and  𝑇; = 573.25	K, and Fig. 13 shows the 𝜁 profiles for case study a with the modifications:  𝐸 =

88.7		 Gu
vwx

, 	𝑘1 = 0.025	 z
v∙|

 and 𝑇; = 573.25	K.  It was chosen to vary these parameters to perform the 

analysis without changing the hydrodynamic behavior of the process. 

 

Insert Figures 12 and 13 

 

 In Fig. 12, for 𝐵 < 0.53	and 20 < |Daef| 	< 2.0 × 10#, the maximum relative error was 3.6%, 0.029%, 

and 12.7% for the particle temperature, fluid temperature, and conversion, respectively. As illustrated in 

Figure 12, the following variations are also observed in the calculations: 13.4 × 10? < ThM < 12.5 × 10# 

and		11.4 × 100t < Py7 < 10.6 × 100!. 

 In Fig. 13, for 𝐵 ≅ 2 and 0.01 < |Daef| < 1975, the maximum relative error was 8.86%, 0.21%, and 

200% for the particle temperature, fluid temperature, and conversion, respectively. As illustrated in Figure 

13, the following variations are also observed in the calculations: 70.1 × 100! < ThM < 13.2 × 10! 

and		43.0 × 100! < Py7 < 80.6. 

 In Figs. 11(A), 12(A) and 13(A), it is observed that ∆𝑇*(%) remains below 3% and presents behavior 

like that of 𝐸(,+1(%). This behavior is attributed to the low values of  𝑡R 𝑡#⁄  (see Table 1): 0.08708 for all 

cases.  

 In Figs. 11(B) and 11(C), 12(B) and 12(C), and 13(B) and 13(C), it is observed that the particle 

temperature and conversion results using the SAS, are within the results of the FD. Even so, in Fig. (13), at 

low conversions, the relative conversion error is very high. Other aspects to be observed in Figs. 11(D), 

12(D) and 13(D) are as follows: the profiles of 𝐵 and 𝑇1  are qualitatively similar, which is due to the 

dependence of ℎ$ on 𝑇1; the profile of |Daef| has exponential behavior, which is due to the Arrhenius law 
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for the rate constant. From the results in Figures 11-13, it can be concluded that for small Bi, small |Daef| 

and small ThM, the present model, Eqs. (10)-(15), is as accurate as the DM - as predicted by the scale 

analysis - and therefore the SAS can be used.  However, in the calculations in Figs. 12 and 13, the large 

variation of |Daef| and ThM, makes it extremely difficult to evaluate the effect of these dimensionless 

numbers on the observed errors (the same holds for Py7 in Figs. 11 and 13). Furthermore, not only the 

ranges of variation must be considered, but also the way in which it occurs. Thus, the analysis proves to be 

complex and therefore, this question is addressed to future studies. 

 It is worth noting that even in the absence of chemical reactions, establishing rigorous criteria for the 

selection of lumped parameter models may require in-depth analysis, as for example in moving bed heat 

exchangers (see Bertoli et al., 2017, 2019). 

 

8. Conclusion  

The continuous search for improving and optimizing MBRs motivates research in modeling and 

simulation. This work contributes to this area by presenting a semi-analytical solution for a lumped 

parameter kinetic and heat transfer model of a tubular MBR, where a first-order chemical reaction occurs 

uniformly within the particles. The local analytical solution was implemented within the FAM framework, 

resulting in a simple numerical programming scheme that is consistent, unconditionally stable, can fast 

integrate very stiff systems (SR = 10!"#), and requires a minimum of computational resources. These 

capabilities demonstrate the effectiveness of SAS as a methodology suitable for both academic research 

and industrial applications. Consequently, it signifies a substantial advancement for the modeling and 

optimization of moving bed reactors. For the sake of completeness, the other primary contributions of this 

work are itemized below:  

• Demonstrates the accuracy of the SAS in comparison with other methods. 

• Develops a specific methodology for SAS error analysis. 

• Demonstrates analytically the unconditional stability of SAS in the implemented form. 

• Generalizes a previous method for proving consistency of SAS. 
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• Improves the physical understanding of model parameters through scale analysis. 

• Performs model (partial) validation through comparison with experimental data. 

• Presents a solution that can be used as a benchmark for MBR simulations. 

• Develops an initial assessment of the parametric range of SAS applicability. 
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Nomenclature 

𝐴  pre-exponential factor, B?
}
C 

𝐴1  particle area = 4𝜋𝑅1M, (mM) 

𝑎?  wall area per unit volume of the reactor	= M
(
, B ?

9
C 

Bi  compound Biot number = Bi1 + Bi$, (−) 

Bi1 particle Biot number for convection heat transfer	= !%!(!
E!

, (−) 

Bi$ particle Biot number for radiation heat transfer	= !%&(!
E!

, (−) 

𝐵  = ~�
!
= 𝐵1 + 𝐵$, (−) 

𝐵1  = ~�!
!

, (−) 

𝐵$  = ~�&
!

, (−) 

𝑏V,E0?  SAS coefficient defined by Eqs. (37a), (41a) and (42a), (−) 
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𝑏V,E0?7   modified SAS coefficient defined by Eqs. (37b), (41b) and (42b), (−) 

𝐶g concentration of species A, Bvwx
v0 C 

𝑐  specific heat at constant pressure,	B u
G�·|

C  

Daef    

 

Damkӧhler fourth number for a first order irreversible chemical reaction =
(0∆�F)82%$(!.

E!+!$
, 

(−) 

Da345 external thermal Damkӧhler number for pyrolysis/devolatilization, for convection heat 

transfer =
(0∆�F)82%$(!

!%!+!$
, (−) 

Da345,E0? =
(0∆�F)8)*#2%$(!

!%!+!$
, (−)  

𝐷1  solids thermal diffusivity = E!
&!'!	

, B9
.

}
C 

𝑑1  particle diameter, (m) 

𝐸  activation energy, B u
vwx
C 

𝐸j;E9CD error for 𝜁 calculated with 𝑘𝑚𝑎𝑥 intervals, (−) 

𝐸(,j   relative error between SAS and FD for 𝜁 = 𝑇1, 𝑋, defined by Eq. (70), (−) 

Fo′	  modified Fourier number = �!-�

(!.
, (−) 

𝑔  dimensionless heat source, defined by Eq. (5), (−) 

𝑔E0?  linearized dimensionless heat source defined by Eq. (21), (−) 

∆𝐻(  enthalpy of reaction, B u
vwx
C 

ℎ*  fluid-wall convective heat transfer coefficient, B z
v.·|

C 

ℎ1 fluid-particle convective heat transfer coefficient, B z
v.·|

C 

ℎ$  wall-particle radiative heat transfer coefficient = 𝜎𝜖18𝑇;M + 𝑇1M:8𝑇; + 𝑇1:, B
z

v.·|
C 

ℎ$,E0? = 𝜎𝜖18𝑇;M + 𝑇1,E0?M :8𝑇; + 𝑇1,E0?:, B
z

v.·|
C 
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𝐾  apparent reaction rate constant = 𝐴𝑒
0 G
𝔑I!, B?

}
C 

𝐾E0? = 𝐴𝑒
0 G
𝔑	I!,)*#, B?

}
C  

𝑘    interval index 

𝑘9CD number of intervals in which the reactor is axially sectioned 

𝑘1  solids thermal conductivity, B z
v·|

C 

𝐿  reactor length, (m) 

𝑚̇* fluid mass flow rate = 𝜌*𝑣*𝜋𝑅M, BG�
}
C 

𝑚̇1 solids mass flow rate = 𝜌1𝑣1(1 − 𝜀)𝜋𝑅M, BG�
}
C 

𝑛�  particle	number	density	 = n9̇!	
&!�!�.(.=!0

= ?0�
�!

,  B ?
v0C 

𝒪(𝑎) order a 

𝑃  largest element of 𝑆, (−) 

Py pyrolysis first number = E!
&!'!(!.8

= Th0M, (−) 

Py7 pyrolysis second number for convection heat transfer = !%!
&!'!(!8

, (−) 

PyE0?7   = !%!
&!'!(!8)*#

, (−) 

𝑅  reactor inner radius, (m) 

𝔑  gas constant = 8.314	 B u
vwx·|

C 

𝑅1  particle radius,	(m) 

RMSEj;E<=> linearization RMSE defined by Eq. (66), in units of 𝜁 

𝑟  radial position within the particle, (m) 

𝑟V,E0?  root defined by Eqs. (34) and (36), (−) 

𝑟;<  wall area / particulate phase area = M(!
!((?0�)

, (−) 

𝑆   set defined in Section 6.5.2  
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𝑇  temperature, (K) 

Th thermal Thiele modulus	= 𝑅1~
8
�!

, (−) 

𝑡́ particle residence time = �
�!

, (s)    

𝑡M   𝑡́ scale defined in Table 1, (s) 

𝑉  reactor volume, (m!) 

𝑉1  particle volume = R
!
𝜋𝑅1!, (m!) 

𝑣*  superficial velocity of the conveyor fluid,	Bv
}
C 

𝑣1 particle axial velocity,	Bv
}
C 

𝑋  reactant conversion, (−) 

𝑧  axial spatial coordinate, (m) 

 

Greek Symbols 

𝛼  = 𝛼* + 𝛼1 = 𝛼1𝜔, (−) 

𝛼* = 𝛼1(𝜔 − 1), (−) 

𝛼1  = Bi1𝛽, (−) 

𝛽  capacity rate ratio	= 9̇!'!
9̇"'"

= &!�!'!(?0�)

&"�"'"
, (−) 

∆𝜁%   relative difference of 𝜁 between OM and SAS, defined by Eq. (68),  (−) 

Δ𝜏  dimensionless time step =	 !%!l
&!�!'!(!E<=>

, (−) 

ɛ  void fraction = 1 − 9̇!

&!�!�(.
, (−) 

𝜖 surface emissivity, (−) 

𝜖m machine precision = 2.220446049250313 × 100?n, (−) 

𝜁  generic variable = 𝑇*, 𝑇1 or 𝑋, (−) 
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𝜃 dimensionless temperature  = +0+$
+!$

, (−) 

𝜃*(∞) defined by Eq. (16), (−) 

𝜃1(∞) defined by Eq. (17), (−) 

𝜉 dimensionless particle radial coordinate = $
(!

, (−)  

𝜌  density, BG�
v0C 

𝜎  Stefan-Boltzmann constant = 5.6697 × 100s B z
v.·|:

C 

𝜏  dimensionless residence time = !%!
&!'!(!

𝑡́, (−) 

𝜏l dimensionless residence time at 𝐿, (−) 

𝜑         = 1 + %&
%!

, (−)  

𝜑E0? = 1 + %&,)*#
%!

, (−) 

𝜔 = 1 + 𝑟;<
%"
%!

, (−)  

 

Subscripts 

𝑓  fluid 

g gas 

ℎ𝑜𝑚 homogeneous 

𝑖  inlet 

𝑗  discrete point 𝑗 in 𝜏  

𝑘  discrete point 𝑘 in 𝜏 

𝑙  root index 

𝑝  particle 

𝑝𝑎𝑟𝑡 particular 

𝑝𝑚  average taken over an interval, for the particle 
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𝑝𝑐 particle center 

𝑝𝑠  particle surface 

𝑤  wall 

 

Superscripts 

𝐿 linearization 

OM other method 

𝑅 machine rounding 

𝑇  total 

 

Acronyms 

C cooling 

DM MBR distributed parameter model of Medeiros et al. (2018, 2021) 

FAM finite-analytic method 

FD finite difference method 

H  heating 

LHS left-hand side 

ODE ordinary differential equation 

MBR  moving bed reactor 

RMSE root mean squared error 

SA semi-analytical solution of Medeiros et al. (2018, 2021) 

SAS semi-analytical solution 

SR stiffness ratio 

TGA thermogravimetric analysis 
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Appendix A – MBR distributed parameter model (Medeiros et al., 2021) 

The MBR model studied by Medeiros et al. (2021) (DM) is to distributed parameters in the particles and 

to lumped parameters in the fluid phase, and the assumptions on which it is based are the same as those in 

Section 2 of this study, except that the thermal conductivity of the particle is considered finite. The 

equations of DM are written below: 

 Governing equations 

�>
��w7

= ThM(1 − 𝑋)     (A1) 

=B"
3�w7

= 𝛼1 B𝜃1< − 𝜃1(∞)C + 𝛼8𝜃*(∞) − 𝜃*:  (A2) 

�B!
��w7

= ?
�.

�
��
B𝜉M �B!

��
C + 𝐺  (A3) 

Where 𝑋 = 𝑋(𝜉, Fo7), 𝜃* = 𝜃*(Fo7), 𝜃1 = 𝜃1(𝜉, Fo7). 

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2 ORCID: https://orcid.org/0000-0002-7247-2934 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2
https://orcid.org/0000-0002-7247-2934
https://creativecommons.org/licenses/by/4.0/


 
 

 42 

 Particle boundary conditions  

At 𝜉 = 0, Fo′ > 0: 		�B!
��
¬
(",�w7)

= 0 (A4) 

At 𝜉 = 1, Fo′ > 0:			− �B!
��
¬
(?,�w7)

= 𝐵 B𝜃1< − 𝜃1(∞)C − 𝐵1 B𝜃* − 𝜃*(∞)C (A5) 

 And conditions at the reactor entrance 

At	Fo′ = 0, ∀	𝜉:		𝑋(𝜉, 0) = 0     (A6) 

At Fo′ = 0: 	𝜃*(0) = 0 (A7) 

At Fo′	 = 0, ∀	𝜉:  𝜃1(𝜉, 0) = 0 (A8) 

 In the above equations, 𝜃*(∞)	and 𝜃1(∞) are given by Eqs. (16) and (17), respectively, and 𝐺 is the 

dimensionless heat source term due to a first order irreversible chemical reaction  

𝐺 = Daef	(1 − 𝑋)     (A9) 

Where 𝐺 = 𝐺(𝜉, Fo′), and the reaction rate constant is dependent on the temperature within the particle, 

according to the Arrhenius equation: 

𝐾8𝜃1(𝜉, Fo′): = 𝐴 exp ± 0�
𝔑	+!

² = 𝐴 exp ± 0�
𝔑+!$YB!O?Z

²  (A10a, b) 

 Medeiros et al. (2018, 2021) semi-analytically solved this model introducing the additional 

simplification of constant rate inside the particle in each interval – calculated at the corresponding 

volumetric average particle temperature –. In the present study, this simplification is not made, and the 

model equations are solved using the Finite Difference (FD) method, as described in Section 6.2. 

 

Appendix B – Verification of SAS in continuous variables 

     Initially, it is easy to see that the boundary conditions Eqs. (13)-(15) are satisfied by Eqs. (53)-(55) and, 

to verify the governing equations, we substitute into Eqs. (10)-(12) the solution in continuous variables, 

Eqs. (53)-(60): 

•  Substituting Eq. (53) in the LHS of Eq. (10) and developing, we have  

=>(.)
=.

= −𝑟!𝑒∫ $0
+
7 =. = 𝑟!(𝑋(𝜏) − 1) =

?0>(.)
@6'

≡ RHS	of		Eq. (10)           (B1a − d) 
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• Substituting Eq. (54) in the LHS of Eq. (11) and developing, we have 

?
A
=B"(.)

=.
= ?

A
∑ 𝑟V𝑏V𝑒$4.!
VW? = ?

A
µ𝑟?

X0($00$.)c&0+O(ANO$.)[B"(.)0B"(\)]0A[B!(.)0B!(\)]

$.0$#
+

𝑟M
X0($00$#)c&0+O(ANO$#)[B"(.)0B"(\)]0A[B!(.)0B!(\)]

$#0$.
+ 𝑟!𝑏!𝑒$0.¶ = 𝜃1(𝜏) − 𝜃1(∞) +

𝜔 B𝜃*(∞) − 𝜃*(𝜏)C ≡ RHS	of		Eq. (11)  

(B2a − d) 

• Substituting Eq. (55) in the LHS of Eq. (12) and developing, we have 

=B!(.)

=.
= ?

A
∑ 𝑟VM𝑏V𝑒$4. + 𝜔∑ 𝑟V𝑏V𝑒$4. =

?
A
∑ 𝑟VM𝑏V𝑒$4. +!
VW? 𝜔 =B"(.)

=.
=!

VW?
!
VW?

$0.0($#O$.)$0O$#$.
A

𝑏!𝑒$0. − B𝜔(𝑟? + 𝑟M) +
$#$.
A
C B𝜃*(𝜏) − 𝜃*(∞)C − (𝑟? + 𝑟M) B𝜃1(𝜏) −

𝜃1(∞)C + 𝜔
=B"(.)

=.
= 𝑔(𝜏) + (𝛽𝜔M + 1) B𝜃*(𝜏) − 𝜃*(∞)C + (𝛽𝜔 + 𝜑) B𝜃1(𝜏) −

𝜃1(∞)C	+ 𝜔 ±𝛽𝜔 B𝜃*(∞) − 𝜃*(𝜏)C + 𝛽 B𝜃1(𝜏) − 𝜃1(∞)C² = 𝑔(𝜏) + 𝜃*(𝜏) −

𝜃*(∞) − 𝜑 B𝜃1(𝜏) − 𝜃1(∞)C ≡ RHS	of		Eq. (12)           

(B3a − e) 

     Therefore, the SAS in continuous variables satisfies the governing equations and the boundary 

conditions, thus constituting an exact representation - in integral form - of the system of model equations. 

This result is, therefore, proof of the consistency of the solution. 

    

Appendix C – Properties of interest of the SAS linearization error for 𝒌𝒎𝒂𝒙 → ∞ 

 As seen in Section 6.5.2, it is of interest to know the behavior of the SAS linearization error as a function 

of the number of intervals. However, for very large values of 𝑘9CD, it is difficult at present - due to the 

large associated machine error or even technological limitations - to know exactly this behavior using only 

computational resources. Thus, the theoretical analysis of the SAS for this limit reveals the following 

properties of interest: 𝐸j;E<=>
l  

𝑃?	: lim
E9CD→\

𝐸j;E9CDl = 0  (C1) 

which follows immediately from the results in Appendix B; and 
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𝑃M:	 lim
E9CD→\

µ𝒪 ±
=�K,)<=>

L

=E<=>
*# ² <𝒪(𝑘9CDM )¶  (C2) 

as a necessary result so that the following limit can be zero 

lim
E9CD→\

=�K,)<=>
L

=E<=>
= − lim

E9CD→\
±𝑘9CD0M =�K,)<=>

L

=E<=>
*# ² = 0  (C3) 

 Note that the previous properties 𝑃?	and 𝑃M  are extended to RMSEj;E<=>. 
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Table Captions 

 

 

Table 1: 𝑡′ scales of phenomena for co-current vertical MBR 

 

Table 2: Kinetic parameters for kaolinite dehydroxylation from different sources. 

 

Table 3: Performance of different ODE solvers at different SR, for integration of model equations along 

the length of the reactor, for case study a, with the following modifications:	𝐴	variable,	𝐸 = 1200	 u
vwx

  

and, ℎ$ 	and	𝐾 evaluated at 𝑇1 = 697.2	K. 
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Figure Captions 

 

 

Figure 1: Schematic representation of the co-current moving-bed reactor and the differential control 

volume considered for the analysis. 

 

Figure 2: 𝜁 at 𝐿, calculated with 𝑘9CD = 10R and  𝑘9CD = 1, for case study a with the modifications: ℎ$ 

and 𝐾 evaluated at 𝑇1 = 597.2	K. 

  

Figure 3: 𝜁 profiles calculated with SAS (𝑘9CD = 10R) and 4th order Runge-Kutta method with fixed step 

size, for case study a with the modifications: ℎ$ and 𝐾 considered to vary with 𝑇1. 

 

Figure 4: 𝜁 profiles (A) − (J); ∆𝜁% profiles (K, L).  Profiles for case study a with the modifications: ℎ$ 

and 𝐾 considered to vary with 𝑇1. In all cases, 𝑘9CD = 10R. 

 

Figure 5:  Computation time of the different methods used to integrate the model equations over 𝐿. All 

simulations were based on case study a with ℎ$ and 𝐾 varying with 𝑇1. In all cases, 𝑘9CD = 10R. 

 

Figure 6:  Comparison of model predictions with TGA data (Teklay et al., 2014) at the heating rate of 

40	K/min.   

 

Figure 7: (A) SAS results for conversion compared with TGA data from Teklay et al. (2014) (solid black 

line) and with SA. (B)-(D) SAS results for particle temperature, and results from Teklay et al. (2014), SA 

and FD, respectively, for the central and surface temperature of the particle. All results for case study b. 
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Figure 8: (A) Estimates of absolute round-off error for 𝜁 (markers), at 𝑧 = 𝐿 (except 𝑋, evaluated at 𝐿/2), 

as a function of 𝑘9CD. Solid and dashed lines for random and non-random round-off errors, respectively. 

(B)-(D) 𝜁 profiles for 𝑘9CD ≤ 10!. (E) Estimates of linearization error for 𝜁 (markers), at 𝑧 = 𝐿 (except 𝑋, 

evaluated at 𝐿/2), as a function of 𝑘9CD. All results for case study a, considering ℎ$ and 𝐾 evaluated at 

𝑇1 = 597.2	K in (A) and ℎ$ and 𝐾 varying with 𝑇1 in (B)-(E). 

 

Figure 9: (A) Root mean squared linearization error (Eq. (66)) for 𝑇* as a function of the reciprocal of the 

number of intervals, considering 	𝑃 = 1 × 10s. (B)-(D) Fitting by the hyperbolic sine function of the root 

mean squared linearization error for 𝜁. All results for case study a, considering ℎ$ and 𝐾 evaluated at 𝑇1 =

597.2	K.   

 

Figure 10: Number of integration steps (bar chart) and computational calculation time (red line) for the 

ODE23s and ODE15s solvers, as a function of SR tests described in Table 3. All results for case study a, 

considering: 𝐴	variable,	𝐸 = 1200	 u
vwx

 and,  ℎ$ and 𝐾 evaluated at 𝑇1 = 697.2	K. 

 

Figure 11: (A) Fluid temperature profiles from FD (black line) and SAS (green line), with the associated 

error, Eq. (68); (B)-(C) Particle temperature and conversion profiles obtained from FD (black lines) and 

SAS (green line), along with their respective relative errors, Eq. (70a) and, Eq. (70b); (D) |Daef| and 𝐵 

profiles as a function of Fo′; (E) Py7 and ThMprofiles as a function of Fo7.  Calculations for case study 𝑎 

with the modifications: 𝐸 = 100	 Gu
vwx

 and 𝑘1 = 1.4	 z
v∙|

.  

 

Figure 12: (A) Fluid temperature profiles from FD (black line) and SAS (green line), with the associated 

error, Eq. (68); (B)-(C) Particle temperature and conversion profiles obtained from FD (black lines) and 

SAS (green line), along with their respective relative errors, Eq. (70a) and, Eq. (70b); (D) |Daef| and 𝐵 
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profiles as a function of Fo′; (E) Py7 and ThMprofiles as a function of Fo7. Calculations for case study 𝑎 

with the modifications: 𝐸 = 65.97	 Gu
vwx

 and 𝑘1 = 0.1	 z
v∙|

. 

 

Figure 13: (A) Fluid temperature profiles from FD (black line) and SAS (green line), with the associated 

error, Eq. (68); (B)-(C) Particle temperature and conversion profiles obtained from FD (black lines) and 

SAS (green line), along with their respective relative errors, Eq. (70a) and, Eq. (70b); (D) |Daef| and 𝐵 

profiles as a function of Fo′; (E) Py7 and ThMprofiles as a function of Fo7. Calculations for case study 𝑎 

with the modifications: 𝐸 = 88.7	 Gu
vwx

 and 𝑘1 = 0.025	 z
v∙|

.  

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2 ORCID: https://orcid.org/0000-0002-7247-2934 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2
https://orcid.org/0000-0002-7247-2934
https://creativecommons.org/licenses/by/4.0/


 
 

 49 

Table 1 

Scale Associated phenomenon 

𝑡? ≡
𝑅1M

𝐷1
 heat conduction at a distance 𝑅1 within the particle 

𝑡M ≡
𝜌1𝑐1𝑅1
3ℎ1

 H of the particle by fluid-particle convection 

𝑡! ≡
𝜌1𝑐1𝑅1
3ℎ$

 H of the particle by wall-particle radiation heat transfer 

𝑡R ≡
𝜌*𝑐*𝑣*

𝑛�𝐴1ℎ1𝑣1
 C of the fluid by fluid-particle convection 

𝑡# ≡
𝜌*𝑣*𝑐*
𝑎?ℎ*𝑣1

 H of the fluid by fluid-wall convection 

𝑡n ≡
𝜌1𝑐1𝑇1h

(−∆𝐻()𝐾𝐶gh
 H of the particle by the first-order chemical reaction 

𝜏t ≡
1
𝐾 first order chemical reaction in the solid phase 
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Table 2 

Set E (kJ/mol) A (s-1) Ref. 

K1 163 2.00 × 10?M Levy and Hurst (1993) 

K2 193 1.00 × 10y Bellotto et al. (1995) 

K3 180 6.30 × 10y Teklay, Yin and Rosendahl (2016) 

K4 176 1.66 × 10?? Teklay et al. (2014) 

K5 99.6 9.00 × 10y Arcenegui-Troya et al. (2021) 

K6 237.6 2.46 × 10y Kassa et al. (2022) 

K7 222 1.00 × 10s Ptácek et al. (2010a) 

K8 202 2.90 × 10?# Ptácek et al. (2010b)  
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Table 3 

Test No. 
Kinetic Parameters 

SR 
Numerical Methods 

SASa 
𝐸 (J/mol) 𝐴 (1/s) EEa Rlsta Heuna RK3a RK4a RK5a ODE23sb ODE15sb 

1 

1200 

103 8.5728×102 • • • • • • • • • 

2 104 8.5728×103 • • • • • • • • • 

3 105 8.5728×104      • • • • 

4 106 8.5728×105       • • • 

5 1010 8.5728×109       • • • 

6 1011 8.5728×1010       • • • 

7 1012 8.5728×1011       • • • 

8 2×1016 1.7146×1016       • • • 

9 1025 8.5728×1024        • • 

10 1030 8.5728×1029        • • 

11 1031 8.5728×1030        • • 

12 1032 8.5728×1031        • • 

13 1033 8.5728×1032        • • 

14 1035 8.5728×1034         • 
 
ᵃ The simulations were carried out with 𝑘!"# = 10$.  
ᵇ The ODE23s and ODE15s solvers are implicit variable-step methods. 
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Figure 1 
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Figure 2  
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Figure 3  
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Figure 4  
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Figure 5 
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Figure 6  
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Figure 7

(C)

(A) (B)

(D)
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 

  

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2 ORCID: https://orcid.org/0000-0002-7247-2934 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-t30tv-v2
https://orcid.org/0000-0002-7247-2934
https://creativecommons.org/licenses/by/4.0/


 
 

 

 

 

Figure 12 
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